YOLOv5 ๐ is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
See the YOLOv5 Docs for full documentation on training, testing and deployment.
Install
Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
Inference
Inference with YOLOv5 and PyTorch Hub. Models automatically download from the latest YOLOv5 release.
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py
detect.py
runs inference on a variety of sources, downloading models automatically from
the latest YOLOv5 release and saving results to runs/detect
.
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Training
Run commands below to reproduce results
on COCO dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest --batch-size
your GPU allows (batch sizes shown for 16 GB devices).
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16

Tutorials
- Train Custom Dataย ๐ RECOMMENDED
- Tips for Best Training Resultsย โ๏ธ RECOMMENDED
- Weights & Biases Loggingย ๐ NEW
- Roboflow for Datasets, Labeling, and Active Learningย ๐ NEW
- Multi-GPU Training
- PyTorch Hubย โญ NEW
- TorchScript, ONNX, CoreML Export ๐
- Test-Time Augmentation (TTA)
- Model Ensembling
- Model Pruning/Sparsity
- Hyperparameter Evolution
- Transfer Learning with Frozen Layersย โญ NEW
- TensorRT Deployment
Get started in seconds with our verified environments. Click each icon below for details.
Weights and Biases | Roboflow - โญ NEW |
---|---|
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases | Label and automatically export your custom datasets directly to YOLOv5 for training with Roboflow |
Figure Notes (click to expand)
- GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- EfficientDet data from google/automl at batch size 8.
- Reproduce by
python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt
Model | size (pixels) |
mAPval 0.5:0.95 |
mAPtest 0.5:0.95 |
mAPval 0.5 |
Speed V100 (ms) |
params (M) |
FLOPs 640 (B) |
|
---|---|---|---|---|---|---|---|---|
YOLOv5s | 640 | 36.7 | 36.7 | 55.4 | 2.0 | 7.3 | 17.0 | |
YOLOv5m | 640 | 44.5 | 44.5 | 63.1 | 2.7 | 21.4 | 51.3 | |
YOLOv5l | 640 | 48.2 | 48.2 | 66.9 | 3.8 | 47.0 | 115.4 | |
YOLOv5x | 640 | 50.4 | 50.4 | 68.8 | 6.1 | 87.7 | 218.8 | |
YOLOv5s6 | 1280 | 43.3 | 43.3 | 61.9 | 4.3 | 12.7 | 17.4 | |
YOLOv5m6 | 1280 | 50.5 | 50.5 | 68.7 | 8.4 | 35.9 | 52.4 | |
YOLOv5l6 | 1280 | 53.4 | 53.4 | 71.1 | 12.3 | 77.2 | 117.7 | |
YOLOv5x6 | 1280 | 54.4 | 54.4 | 72.0 | 22.4 | 141.8 | 222.9 | |
YOLOv5x6 TTA | 1280 | 55.0 | 55.0 | 72.0 | 70.8 | - | - |
Table Notes (click to expand)
- All checkpoints are trained to 300 epochs with default settings and hyperparameters.
- APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
- mAP values are for single-model single-scale unless otherwise noted.
Reproduce bypython val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
- Speed averaged over 5000 COCO val2017 images using a
GCP n1-standard-16 V100 instance, and
includes FP16 inference, postprocessing and NMS.
Reproduce bypython val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half
- TTA Test Time Augmentation includes reflection and scale.
Reproduce bypython val.py --data coco.yaml --img 1536 --iou 0.7 --augment
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to provide thoughts and feedback on your experience with YOLOv5. Thank you!
For issues running YOLOv5 please visit GitHub Issues. For business or professional support requests please visit https://ultralytics.com/contact.
yolov5's People
Recommend Projects
-
React
A declarative, efficient, and flexible JavaScript library for building user interfaces.
-
Vue.js
๐ Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.
-
Typescript
TypeScript is a superset of JavaScript that compiles to clean JavaScript output.
-
TensorFlow
An Open Source Machine Learning Framework for Everyone
-
Django
The Web framework for perfectionists with deadlines.
-
Laravel
A PHP framework for web artisans
-
D3
Bring data to life with SVG, Canvas and HTML. ๐๐๐
-
Recommend Topics
-
javascript
JavaScript (JS) is a lightweight interpreted programming language with first-class functions.
-
web
Some thing interesting about web. New door for the world.
-
server
A server is a program made to process requests and deliver data to clients.
-
Machine learning
Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
-
Visualization
Some thing interesting about visualization, use data art
-
Game
Some thing interesting about game, make everyone happy.
Recommend Org
-
Facebook
We are working to build community through open source technology. NB: members must have two-factor auth.
-
Microsoft
Open source projects and samples from Microsoft.
-
Google
Google โค๏ธ Open Source for everyone.
-
Alibaba
Alibaba Open Source for everyone
-
D3
Data-Driven Documents codes.
-
Tencent
China tencent open source team.