Giter VIP home page Giter VIP logo

unetplusplus's Introduction

UNet++: A Nested U-Net Architecture for Medical Image Segmentation

UNet++ is a new general purpose image segmentation architecture for more accurate image segmentation. UNet++ consists of U-Nets of varying depths whose decoders are densely connected at the same resolution via the redesigned skip pathways, which aim to address two key challenges of the U-Net: 1) unknown depth of the optimal architecture and 2) the unnecessarily restrictive design of skip connections.

Paper

This repository provides the official Keras implementation of UNet++ in the following papers:

UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang
Arizona State University
IEEE Transactions on Medical Imaging (TMI)
paper | code

UNet++: A Nested U-Net Architecture for Medical Image Segmentation
Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang
Arizona State University
Deep Learning in Medical Image Analysis (DLMIA) 2018. (Oral)
paper | code | slides | poster | blog

Official implementation

  • keras/
  • pytorch/

Other implementation

Citation

If you use UNet++ for your research, please cite our papers:

@article{zhou2019unetplusplus,
  title={UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation},
  author={Zhou, Zongwei and Siddiquee, Md Mahfuzur Rahman and Tajbakhsh, Nima and Liang, Jianming},
  journal={IEEE Transactions on Medical Imaging},
  year={2019},
  publisher={IEEE}
}

@incollection{zhou2018unetplusplus,
  title={Unet++: A Nested U-Net Architecture for Medical Image Segmentation},
  author={Zhou, Zongwei and Siddiquee, Md Mahfuzur Rahman and Tajbakhsh, Nima and Liang, Jianming},
  booktitle={Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support},
  pages={3--11},
  year={2018},
  publisher={Springer}
}

@phdthesis{zhou2021towards,
  title={Towards Annotation-Efficient Deep Learning for Computer-Aided Diagnosis},
  author={Zhou, Zongwei},
  year={2021},
  school={Arizona State University}
}

Acknowledgments

This research has been supported partially by NIH under Award Number R01HL128785, by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. This is a patent-pending technology.

unetplusplus's People

Contributors

mrgiovanni avatar sbajpai2 avatar mahfuzmohammad avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.