Giter VIP home page Giter VIP logo

mava's Introduction

Mava logo

Distributed Multi-Agent Reinforcement Learning in JAX


๐Ÿ‘‹ UPDATE - 19/12/2023: Mava is now fully in JAX with substantial speed improvement compared to other popular libraries. We currently provide native support for the Jumanji environment API, which is also supported in Matrax and a wrapper for the newly released JaxMARL environments. Mava follows a similar design philosophy to CleanRL and PureJaxRL, where we allow for some code duplication to enable readability and easy reuse. Finally, we have updated our technical report to reflect our transition to JAX. Please feel free to take a look here! If you would still like to use our deprecated TF2-based framework and systems please install v0.1.3 of Mava (e.g. pip install id-mava==0.1.3).


Welcome to Mava! ๐Ÿฆ

Mava provides simplified code for quickly iterating on ideas in multi-agent reinforcement learning (MARL) with useful implementations of MARL algorithms in JAX allowing for easy parallelisation across devices with JAX's pmap. Mava is a project originating in the Research Team at InstaDeep.

To join us in these efforts, please feel free to reach out, raise issues or read our contribution guidelines (or just star ๐ŸŒŸ to stay up to date with the latest developments)!

Overview ๐Ÿฆœ

Mava currently offers the following building blocks for MARL research:

  • ๐Ÿฅ‘ Implementations of MARL algorithms: Implementations of multi-agent PPO systems that follow both the Centralised Training with Decentralised Execution (CTDE) and Decentralised Training with Decentralised Execution (DTDE) MARL paradigms.
  • ๐Ÿฌ Environment Wrappers: Example wrapper for mapping a Jumanji environment to an environment usable in Mava. At the moment, we only support Robotic Warehouse but plan to support more environments soon.
  • ๐ŸŽ“ Educational Material: Quickstart notebook to demonstrate how Mava can be used and to highlight the added value of JAX-based MARL.

Performance and Speed ๐Ÿš€

All of the experiments below were performed using an NVIDIA Quadro RTX 4000 GPU with 8GB Memory.

In order to show the utility of end-to-end JAX-based MARL systems and JAX-based environments we compare the speed of Mava against EPyMARL as measured in total training wallclock time on simple Robotic Warehouse (RWARE) tasks with 2 and 4 agents. Our aim is to illustrate the speed increases that are possible with using end-to-end Jax-based systems and we do not necessarily make an effort to achieve optimal performance. For EPyMARL, we use the hyperparameters as recommended by Papoudakis et al. (2020) and for Mava we performed a basic grid search. In both cases, systems were trained up to 20 million total environment steps using 16 vectorised environments.

Mava ff mappo tiny 2ag Mava ff mappo tiny 4ag Mava ff mappo small 4ag

Mava feedforward MAPPO performance on the tiny-2ag, tiny-4ag and small-4ag RWARE tasks.

๐Ÿ“Œ An important note on the differences in converged performance

In order to benefit from the wallclock speed-ups afforded by JAX-based systems it is required that environments also be written in JAX. It is for this reason that Mava does not use the exact same version of the RWARE environment as EPyMARL but instead uses a JAX-based implementation of RWARE found in Jumanji, under the name RobotWarehouse. One of the notable differences in the underlying environment logic is that RobotWarehouse will not attempt to resolve agent collisions but will instead terminate an episode when agents do collide. In our experiments, this appeared to make the environment more challenging. For this reason we show the performance of Mava on Jumanji with and without termination upon collision indicated with w/o collision in the figure legends. For a more detailed discussion, please see the following page.

๐Ÿงจ Steps per second experiments using vectorised environments

Furthermore, we illustrate the speed of Mava by showing the steps per second as the number of parallel environments is increased. These steps per second scaling plots were computed using a standard laptop GPU, specifically an RTX-3060 GPU with 6GB memory.

Mava sps Mava ff mappo speed comparison

Mava steps per second scaling with increased vectorised environments and total training run time for 20M environment steps.

Code Philosophy ๐Ÿง˜

The current code in Mava is adapted from PureJaxRL which provides high-quality single-file implementations with research-friendly features. In turn, PureJaxRL is inspired by the code philosophy from CleanRL. Along this vein of easy-to-use and understandable RL codebases, Mava is not designed to be a modular library and is not meant to be imported. Our repository focuses on simplicity and clarity in its implementations while utilising the advantages offered by JAX such as pmap and vmap, making it an excellent resource for researchers and practitioners to build upon.

Installation ๐ŸŽฌ

At the moment Mava is not meant to be installed as a library, but rather to be used as a research tool.

You can use Mava by cloning the repo and pip installing as follows:

git clone https://github.com/instadeepai/mava.git
cd mava
pip install -e .

We have tested Mava on Python 3.9. Note that because the installation of JAX differs depending on your hardware accelerator, we advise users to explicitly install the correct JAX version (see the official installation guide). For more in-depth installation guides including Docker builds and virtual environments, please see our detailed installation guide.

Quickstart โšก

To get started with training your first Mava system, simply run one of the system files. e.g.,

python mava/systems/ff_ippo.py

Mava makes use of Hydra for config management. In order to see our default system configs please see the mava/configs/ directory. A benefit of Hydra is that configs can either be set in config yaml files or overwritten from the terminal on the fly. For an example of running a system on the LBF environment, the above code can simply be adapted as follows:

python mava/systems/ff_ippo.py env=lbf

Different scenarios can also be run by making the following config updates from the terminal:

python mava/systems/ff_ippo.py env=rware env/scenario=tiny-4ag

Additionally, we also have a Quickstart notebook that can be used to quickly create and train your first Multi-agent system.

Advanced Usage ๐Ÿ‘ฝ

Mava can be used in a wide array of advanced systems. As an example, we demonstrate recording experience data from one of our PPO systems into a Flashbax Vault. This vault can then easily be integrated into offline MARL systems, such as those found in OG-MARL. See the Advanced README for more information.

Contributing ๐Ÿค

Please read our contributing docs for details on how to submit pull requests, our Contributor License Agreement and community guidelines.

Roadmap ๐Ÿ›ค๏ธ

We plan to iteratively expand Mava in the following increments:

  • ๐ŸŒด Support for more multi-agent Jumanji environments.
  • ๐Ÿ” More robust recurrent systems.
  • ๐Ÿ“Š Benchmarks on more environments.
  • ๐Ÿฆพ Support for off-policy algorithms.

Please do follow along as we develop this next phase!

See Also ๐Ÿ”Ž

InstaDeep's MARL ecosystem in JAX. In particular, we suggest users check out the following sister repositories:

  • ๐Ÿ”Œ OG-MARL: datasets with baselines for offline MARL in JAX.
  • ๐ŸŒด Jumanji: a diverse suite of scalable reinforcement learning environments in JAX.
  • ๐Ÿ˜Ž Matrax: a collection of matrix games in JAX.
  • ๐Ÿ”ฆ Flashbax: accelerated replay buffers in JAX.
  • ๐Ÿ“ˆ MARL-eval: standardised experiment data aggregation and visualisation for MARL.

Related. Other libraries related to accelerated MARL in JAX.

  • ๐ŸฆŠ JaxMARL: accelerated MARL environments with baselines in JAX.
  • ๐ŸŒ€ DeepMind Anakin for the Anakin podracer architecture to train RL agents at scale.
  • โ™Ÿ๏ธ Pgx: JAX implementations of classic board games, such as Chess, Go and Shogi.
  • ๐Ÿ”ผ Minimax: JAX implementations of autocurricula baselines for RL.

Citing Mava ๐Ÿ“š

If you use Mava in your work, please cite the accompanying technical report:

@article{dekock2023mava,
    title={Mava: a research library for distributed multi-agent reinforcement learning in JAX},
    author={Ruan de Kock and Omayma Mahjoub and Sasha Abramowitz and Wiem Khlifi and Callum Rhys Tilbury
    and Claude Formanek and Andries P. Smit and Arnu Pretorius},
    year={2021},
    journal={arXiv preprint arXiv:2107.01460},
    url={https://arxiv.org/pdf/2107.01460.pdf},
}

Acknowledgements ๐Ÿ™

We would like to thank all the authors who contributed to the previous TF version of Mava: Kale-ab Tessera, St John Grimbly, Kevin Eloff, Siphelele Danisa, Lawrence Francis, Jonathan Shock, Herman Kamper, Willie Brink, Herman Engelbrecht, Alexandre Laterre, Karim Beguir. Their contributions can be found in our TF technical report.

The development of Mava was supported with Cloud TPUs from Google's TPU Research Cloud (TRC) ๐ŸŒค.

mava's People

Contributors

kaleabtessera avatar arnupretorius avatar driessmit avatar omaymamahjoub avatar ruanjohn avatar mmorris44 avatar sgrimbly avatar sash-a avatar asadjeewa avatar jcformanek avatar ulricharmel avatar kevineloff avatar ldfrancis avatar siddarthsingh1 avatar callumtilbury avatar wiemkhlifi avatar edantoledo avatar cwichka avatar nashlen avatar eltociear avatar mnguyen0226 avatar sipheleledanisa avatar alaterre avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.