Giter VIP home page Giter VIP logo

electricitymap's Introduction

electricitymap Slack Status CircleCI Twitter Follow

A real-time visualisation of the Greenhouse Gas (in terms of CO2 equivalent) footprint of electricity consumption built with d3.js, optimized for Google Chrome. Try it out at http://www.electricitymap.org, or download the app:

Get it on Google Play Get it on the Apple Store

image

You can contribute by

You can also see a list of missing datas displayed as warnings in the developer console, or question marks in the country panel:

image

Check the contributing section for more details.

Data sources

Carbon intensity calculation and data source

The carbon intensity of each country is measured from the perspective of a consumer. It represents the greenhouse gas footprint of 1 kWh consumed inside a given country. The footprint is measured in gCO2eq (grams CO2 equivalent), meaning each greenhouse gas is converted to its CO2 equivalent in terms of global warming potential over 100 year (for instance, 1 gram of methane emitted has the same global warming impact during 100 years as ~20 grams of CO2 over the same period).

The carbon intensity of each type of power plant takes into account emissions arising from the whole lifecycle of the plant (construction, fuel production, operational emissions, and decomissioning). Carbon-intensity factors used in the map are detailed in co2eq_parameters.js. These numbers come from the following scientific peer reviewed litterature:

  • IPCC (2014) Fifth Assessment Report is used as reference in most instances (see a summary in the wikipedia entry)

Country-specific carbon-intensity factors:

Each country has a CO2 mass flow that depends on neighboring countries. In order to determine the carbon footprint of each country, the set of coupled CO2 mass flow balance equations of each countries must be solved simultaneously. This is done by solving the linear system of equations defining the network of greenhouse gas exchanges. Take a look at this notebook for a deeper explanation.

Real-time electricity data sources

Real-time electricity data is obtained using parsers

Production capacity data sources

Production capacities are centralized in the zones.json file.

Electricity prices (day-ahead) data sources

Real-time weather data sources

We use the US National Weather Service's Global Forecast System (GFS)'s GFS 0.25 Degree Hourly data. Forecasts are made every 6 hours, with a 1 hour time step. The values extracted are wind speed and direction at 10m altitude, and ground solar irradiance (DSWRF - Downward Short-Wave Radiation Flux), which takes into account cloud coverage. In order to obtain an estimate of those values at current time, an interpolation is made between two forecasts (the one at the beginning of the hour, and the one at the end of the hour).

Topology data

We use the Natural Earth Data Cultural Vectors country subdivisions (map admin subunits).

Contribute

Want to help? Join us on slack at http://slack.tmrow.co.

Running locally

To get started, clone or fork the repository, and install Docker.

The frontend will need compiling. In order to do this, open a terminal and run

docker-compose run --rm web npm run watch

This will watch over source file changes, and recompile if needed.

Now that the frontend is compiled, you can run the application by running the following command in a new terminal:

docker-compose up --build

Head over to http://localhost:8000/ and you should see the map! Note that the backend is responsible for calculation carbon emissions, so the map will be empty.

Once you're done doing your changes, submit a pull request to get them integrated into the production version.

Adding a new country

It is very simple to add a new country. The Electricity Map backend runs a list of so-called parsers every 5min. Those parsers are responsible to fetch the generation mix for a given country (check out the existing list in the parsers directory, or look at the work in progress).

A parser is a python script that is expected to define the method fetch_production which returns the production mix at current time, in the format:

def fetch_production(country_code='FR', session=None):
    return {
      'countryCode': 'FR',
      'datetime': '2017-01-01T00:00:00Z',
      'production': {
          'biomass': 0.0,
          'coal': 0.0,
          'gas': 0.0,
          'hydro': 0.0,
          'nuclear': null,
          'oil': 0.0,
          'solar': 0.0,
          'wind': 0.0,
          'geothermal': 0.0,
          'unknown': 0.0
      },
      'storage': {
          'hydro': -10.0,
      },
      'source': 'mysource.com'
    }

The session object is a python request session that you can re-use to make HTTP requests.

The production values should never be negative. Use null, or ommit the key, if a specific production mode is not known. Storage values can be both positive (when storing energy) or negative (when the storage is emptied).

The parser can also return an array of objects if multiple time values can be fetched. The backend will automatically update past values properly.

Once you're done, add your parser to the zones.json and exchanges.json configuration files.

For more info, check out the example or browse existing parsers.

Testing parsers locally

We've added a testing server locally. In order to test your parser, you can run

PYTHONPATH=. python mockserver/update_state.py <zone_name>

from the root directory, replacing <zone_name> by the zone identifier of the parser you want to test. This will fetch production and exchanges and assign it a random carbon intensity value. It should appear on the map as you refresh your local browser.

Troubleshooting

  • ERROR: for X Cannot create container for service X: Invalid bind mount spec "<path>": Invalid volume specification: '<volume spec>'. If you get this error after running docker-compose up on Windows, you should tell docker-compose to properly understand Windows paths by setting the environment variable COMPOSE_CONVERT_WINDOWS_PATHS to 0 by running setx COMPOSE_CONVERT_WINDOWS_PATHS 0. You will also need a recent version of docker-compose. We have successfully seen this fix work with v1.13.0-rc4. More info here: docker/compose#4274.

  • No website found at http://localhost:8000: This can happen if you're running Docker in a virtual machine. Find out docker's IP using docker-machine ip default, and replace localhost by your Docker IP when connecting.

electricitymap's People

Contributors

corradio avatar blackleg avatar systemcatch avatar brunolajoie avatar magol avatar raffox97 avatar jarek avatar thierryollivero avatar martindaniel4 avatar igorarduin avatar liang avatar alexanmtz avatar scarlac avatar mariuskroon avatar denplis avatar mlucchini avatar tobiasseidel avatar scottlee120 avatar nikkozzblu avatar spydarlee avatar briancraig avatar peterpoetzi avatar muneerahasqah avatar lesspointless avatar daniel-callejas-sevilla avatar timtroendle avatar steren avatar superlopuh avatar ric2b avatar oliviersemet avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.