Giter VIP home page Giter VIP logo

pytorch_connectomics's Introduction

PyTorch Connectomics (PyTC)

Introduction

The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individual synapses. Recent advances in electronic microscopy (EM) have enabled the collection of a large number of image stacks at nanometer resolution, but the annotation requires expertise and is super time-consuming. Here we provide a deep learning framework powered by PyTorch for automatic and semi-automatic data annotation in connectomics. This repository is actively under development by Visual Computing Group (VCG) at Harvard University.

Key Features

  • Multitask Learning
  • Active Learning
  • CPU and GPU Parallelism

If you want new features that are relatively easy to implement (e.g., loss functions, models), please open a feature requirement discussion in issues or implement by yourself and submit a pull request. For other features that requires substantial amount of design and coding, please contact the author directly.

Environment

The code is developed and tested under the following configurations.

  • Hardware: 1-8 Nvidia GPUs (with at least 12G GPU memories) (change SYSTEM.NUM_GPU accordingly)
  • Software: CentOS Linux 7.4 (Core), CUDA>=10.2, Python>=3.8, PyTorch>=1.5.1, YACS>=0.1.8

Installation

Create a new conda environment:

conda create -n py3_torch python=3.8
source activate py3_torch
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

Please note that this package is mainly developed on the Harvard FASRC cluster. More information about GPU computing on the FASRC cluster can be found here.

Download and install the package:

git clone https://github.com/zudi-lin/pytorch_connectomics.git
cd pytorch_connectomics
pip install --upgrade pip
pip install -r requirements.txt
pip install --editable .

For more information and frequently asked questions about installation, please check the installation guide.

Notes

Data Augmentation

We provide a data augmentation interface several different kinds of commonly used augmentation method for EM images. The interface is pure-python, and operate on and output only numpy arrays, so it can be easily incorporated into any kinds of python-based deep learning frameworks (e.g., TensorFlow). For more details about the design of the data augmentation module, please check the documentation.

YACS Configuration

We use the Yet Another Configuration System (YACS) library to manage the settings and hyperparameters in model training and inference. The configuration files for tutorial examples can be found here. All available configuration options can be found at connectomics/config/config.py. Please note that the default value of several options is None, which is only supported after YACS v0.1.8.

Model Zoo

We provide several encoder-decoder architectures, which can be found here. Those models can be used for both semantic segmentation and bottom-up instance segmentation of 3D image stacks. We also provide benchmark results on several public connectomics datasets here with detailed training specifications for users to reproduce.

Acknowledgement

This project is built upon numerous previous projects. Especially, we'd like to thank the contributors of the following github repositories:

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you find PyTorch Connectomics useful in your research, please cite:

@misc{lin2019pytorchconnectomics,
  author =       {Zudi Lin and Donglai Wei},
  title =        {PyTorch Connectomics},
  howpublished = {\url{https://github.com/zudi-lin/pytorch_connectomics}},
  year =         {2019}
}

pytorch_connectomics's People

Contributors

zudi-lin avatar yuhaolu1996 avatar mouradbelo avatar donglaiw avatar rainancoffee avatar aarushgupta avatar michaelsqj avatar zijzhao1996 avatar geekswaroop avatar divyam-goel avatar pragyasingh7 avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.