Giter VIP home page Giter VIP logo

dpct's Introduction

Dynamic Programming Cell Tracking (DPCT)

Note: This repository is no longer maintained, find the maintained version: here https://github.com/ilastik/dpct/

by Carsten Haubold, 2016

This is a stand-alone tool for running tracking of divisible objects using a modified successive shortest paths solver.

Installation

Conda

On OSX and Linux you can install the python module of this package within a conda environment using:

conda install dpct -c chaubold -c ilastik

Manual compilation

Requirements:

  • a compiler capable of C++11 (clang or GCC >= 4.8)
  • cmake >= 2.8 for configuration (on OSX e.g. brew install cmake)
  • boost (e.g. brew install boost)
  • the lemon graph library

If you want to parse the JSON files with comments, use e.g. commentjson for python, or Jackson for Java.

Binaries

The bin folder contains the tracking tool that can be run from the command line. It uses a JSON file formats as input and output (see below). Invok it once to see usage instructions.

  • track: given a graph and weights, return the best tracking result

Example:

$ ls
>>> weights.json	track	Makefile	model.json	train

$ ./track -m model.json -w weights.json -o trackingresult.json
>>> lots of output...

Or if you want to use it from python, you can create the model and weight as dictionaries (exactly same structure as the JSON format) and then in python run the following:

import dpct

# run tracking
mymodel = {...}
myweights = {"weights": [10,10,500,500]}
result = dpct.trackFlowBased(mymodel, myweights)

See test/test.py for a complete example.

JSON file formats

See the Readme of the accompanying ILP solver for details of the JSON file format. The formats are compatible (but only size_t ids are allowed here), the only difference is that here we use also the start and end-timestep of each detection to order the nodes by time. See test/test.py.

References

The algorithm implemented here is described in:

  • C. Haubold, J. Ales, S. Wolf, F. A. Hamprecht. A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets. ECCV 2016 Proceedings. Bibtex

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.