Giter VIP home page Giter VIP logo

tarpc's Introduction

tarpc: Tim & Adam's RPC lib

Travis-CI Status Coverage Status Software License Latest Version Join the chat at https://gitter.im/tarpc/Lobby

Disclaimer: This is not an official Google product.

tarpc is an RPC framework for rust with a focus on ease of use. Defining a service can be done in just a few lines of code, and most of the boilerplate of writing a server is taken care of for you.

Documentation

What is an RPC framework?

"RPC" stands for "Remote Procedure Call," a function call where the work of producing the return value is being done somewhere else. When an rpc function is invoked, behind the scenes the function contacts some other process somewhere and asks them to evaluate the function instead. The original function then returns the value produced by the other process.

RPC frameworks are a fundamental building block of most microservices-oriented architectures. Two well-known ones are gRPC and Cap'n Proto.

tarpc differentiates itself from other RPC frameworks by defining the schema in code, rather than in a separate language such as .proto. This means there's no separate compilation process, and no cognitive context switching between different languages. Additionally, it works with the community-backed library serde: any serde-serializable type can be used as arguments to tarpc fns.

Usage

NB: this example is for master. Are you looking for other versions?

Add to your Cargo.toml dependencies:

tarpc = "0.12.0"
tarpc-plugins = "0.4.0"

The service! macro expands to a collection of items that form an rpc service. In the above example, the macro is called within the hello_service module. This module will contain a Client stub and Service trait. There is These generated types make it easy and ergonomic to write servers without dealing with serialization directly. Simply implement one of the generated traits, and you're off to the races!

Example:

Here's a small service.

#![feature(plugin, futures_api, pin, arbitrary_self_types, await_macro, async_await)]
#![plugin(tarpc_plugins)]

use futures::{
    compat::TokioDefaultSpawner,
    future::{self, Ready},
    prelude::*,
    spawn,
};
use tarpc::rpc::{
    client, context,
    server::{self, Handler, Server},
};
use std::io;

// This is the service definition. It looks a lot like a trait definition.
// It defines one RPC, hello, which takes one arg, name, and returns a String.
tarpc::service! {
    rpc hello(name: String) -> String;
}

// This is the type that implements the generated Service trait. It is the business logic
// and is used to start the server.
#[derive(Clone)]
struct HelloServer;

impl Service for HelloServer {
    // Each defined rpc generates two items in the trait, a fn that serves the RPC, and
    // an associated type representing the future output by the fn.

    type HelloFut = Ready<String>;

    fn hello(&self, _: context::Context, name: String) -> Self::HelloFut {
        future::ready(format!("Hello, {}!", name))
    }
}

async fn run() -> io::Result<()> {
    // bincode_transport is provided by the associated crate bincode-transport. It makes it easy
    // to start up a serde-powered bincode serialization strategy over TCP.
    let transport = bincode_transport::listen(&"0.0.0.0:0".parse().unwrap())?;
    let addr = transport.local_addr();

    // The server is configured with the defaults.
    let server = Server::new(server::Config::default())
        // Server can listen on any type that implements the Transport trait.
        .incoming(transport)
        // Close the stream after the client connects
        .take(1)
        // serve is generated by the service! macro. It takes as input any type implementing
        // the generated Service trait.
        .respond_with(serve(HelloServer));

    spawn!(server).unwrap();

    let transport = await!(bincode_transport::connect(&addr))?;

    // new_stub is generated by the service! macro. Like Server, it takes a config and any
    // Transport as input, and returns a Client, also generated by the macro.
    // by the service mcro.
    let mut client = await!(new_stub(client::Config::default(), transport));

    // The client has an RPC method for each RPC defined in service!. It takes the same args
    // as defined, with the addition of a Context, which is always the first arg. The Context
    // specifies a deadline and trace information which can be helpful in debugging requests.
    let hello = await!(client.hello(context::current(), "Stim".to_string()))?;

    println!("{}", hello);

    Ok(())
}

fn main() {
    tokio::run(run()
            .map_err(|e| eprintln!("Oh no: {}", e))
            .boxed()
            .compat(TokioDefaultSpawner),
    );
}

Service Documentation

Use cargo doc as you normally would to see the documentation created for all items expanded by a service! invocation.

Contributing

To contribute to tarpc, please see CONTRIBUTING.

License

tarpc is distributed under the terms of the MIT license.

See LICENSE for details.

tarpc's People

Contributors

aawright avatar bowbaq avatar compressed avatar djherbis avatar drager avatar gsquire avatar henriquenogara avatar imp avatar jonhoo avatar mortonfox avatar ms705 avatar qwaz avatar shaladdle avatar tikue avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.