Giter VIP home page Giter VIP logo

texar-pytorch's Introduction




pypi Build Status codecov Documentation Status License

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation.

Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones.

Key Features

  • Two Versions, (Mostly) Same Interfaces. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch:
    • Interfaces and variable sharing in PyTorch convention
    • Excellent factorization and rich functionalities in TF convention.
  • Versatile to support broad needs:
    • data processing, model architectures, loss functions, training and inference algorithms, evaluation, ...
    • encoder(s) to decoder(s), sequential- and self-attentions, memory, hierarchical models, classifiers, ...
    • maximum likelihood learning, reinforcement learning, adversarial learning, probabilistic modeling, ...
  • Fully Customizable at multiple abstraction level -- both novice-friendly and expert-friendly.
    • Free to plug in whatever external modules, since Texar is fully compatible with the native PyTorch APIs.
  • Modularized for maximal re-use and clean APIs, based on principled decomposition of Learning-Inference-Model Architecture.
  • Rich Pre-trained Models, Rich Usage with Uniform Interfaces. BERT, GPT2, XLNet, etc, for encoding, classification, generation, and composing complex models with other Texar components!
  • Clean, detailed documentation and rich examples.




Library API Example

A code example that builds and trains a Conditional GPT2 model (e.g., for machine translation and text summarization):

import texar.torch as tx
from texar.torch.run import *

# (1) Modeling
class ConditionalGPT2Model(nn.Module):
  """An encoder-decoder model with GPT-2 as the decoder."""
  def __init__(self, vocab_size):
    super().__init__()
    # Use hyperparameter dict for model configuration
    self.embedder = tx.modules.WordEmbedder(vocab_size, hparams=emb_hparams)
    self.encoder = tx.modules.TransformerEncoder(hparams=enc_hparams)
    self.decoder = tx.modules.GPT2Decoder("gpt2-small")  # With pre-trained weights

  def _get_decoder_output(self, batch, train=True):
    """Perform model inference, i.e., decoding."""
    enc_states = self.encoder(inputs=self.embedder(batch['source_text_ids']),
                              sequence_length=batch['source_length'])
    if train:  # Teacher-forcing decoding at training time
      return self.decoder(
          inputs=batch['target_text_ids'], sequence_length=batch['target_length'] - 1,
          memory=enc_states, memory_sequence_length=batch['source_length'])
    else:      # Beam search decoding at prediction time
      start_tokens = torch.full_like(batch['source_text_ids'][:, 0], BOS)
      return self.decoder(
          beam_width=5, start_tokens=start_tokens,
          memory=enc_states, memory_sequence_length=batch['source_length'])

  def forward(self, batch):
    """Compute training loss."""
    outputs = self._get_decoder_output(batch)
    loss = tx.losses.sequence_sparse_softmax_cross_entropy(  # Sequence loss
        labels=batch['target_text_ids'][:, 1:], logits=outputs.logits,
        sequence_length=batch['target_length'] - 1)  # Automatic masking
    return {"loss": loss}

  def predict(self, batch):
    """Compute model predictions."""
    sequence, _ = self._get_decoder_output(batch, train=False)
    return {"gen_text_ids": sequence}

  
# (2) Data
# Create dataset splits using built-in data loaders
datasets = {split: tx.data.PairedTextData(hparams=data_hparams[split])
            for split in ["train", "valid", "test"]}

model = ConditionalGPT2Model(datasets["train"].target_vocab.size)

# (3) Training
# Manage the train-eval loop with the Executor API
executor = Executor(
  model=model, datasets=datasets,
  optimizer={"type": torch.optim.Adam, "kwargs": {"lr": 5e-4}},
  stop_training_on=cond.epoch(20),
  log_every=cond.iteration(100),
  validate_every=cond.epoch(1),
  train_metric=("loss", metric.RunningAverage(10, pred_name="loss")),
  valid_metric=metric.BLEU(pred_name="gen_text_ids", label_name="target_text_ids"),
  save_every=cond.validation(better=True),
  checkpoint_dir="outputs/saved_models/")
executor.train()
executor.test(datasets["test"])

Many more examples are available here.

Installation

Texar-PyTorch requires:

  • python == 3.6 or 3.7
  • torch >= 1.0.0. Please follow the official instructions to install the appropriate version.

After torch is installed, install Texar from PyPI:

pip install texar-pytorch

To use cutting-edge features or develop locally, install from source:

git clone https://github.com/asyml/texar-pytorch.git
cd texar-pytorch
pip install .

To use tensorboard support with Executor, please install tensorboardX with the following command

pip install tensorboardX

Getting Started

Reference

If you use Texar, please cite the tech report with the following BibTex entry:

Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiaodan Liang, Wanrong Zhu, Devendra Sachan and Eric Xing
ACL 2019

@inproceedings{hu2019texar,
  title={Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation},
  author={Hu, Zhiting and Shi, Haoran and Tan, Bowen and Wang, Wentao and Yang, Zichao and Zhao, Tiancheng and He, Junxian and Qin, Lianhui and Wang, Di and others},
  booktitle={ACL 2019, System Demonstrations},
  year={2019}
}

License

Apache License 2.0

texar-pytorch's People

Contributors

atif93 avatar avinashbukkittu avatar codle avatar gpengzhi avatar haoransh avatar huzecong avatar imgaojun avatar swapnull7 avatar tomnong avatar weiwei718 avatar zhitinghu avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.