Giter VIP home page Giter VIP logo

few's Introduction

Build Status Code Health Coverage Status DOI

Few

Few is a Feature Engineering Wrapper for sci-kitlearn. Few looks for a set of feature transformations that work best with a specified machine learning algorithm in order to improve model estimation and prediction. In doing so, Few is able to provide the user with a set of concise, engineered features that describe their data.

Few uses genetic programming to generate, search and update engineered features. It incorporates feedback from the ML process to select important features, while also scoring them internally.

Install

You can use pip to install FEW from PyPi as:

pip install few

or you can clone the git repo and add it to your Python path. Then from the repo, run

python setup.py install

Mac users

Some Mac users have reported issues when installing with old versions of gcc (like gcc-4.2) because the random.h library is not included (basically this issue). I recommend installing gcc-4.8 or greater for use with Few. After updating the compiler, you can reinstall with

CC=gcc-4.8 python setupy.py install

Usage

Few uses the same nomenclature as sklearn supervised learning modules. Here is a simple example script:

# import few
from few import FEW
# initialize
learner = FEW(generations=100, population_size=25, ml = LassoLarsCV())
# fit model
learner.fit(X,y)
# generate prediction
y_pred = learner.predict(X_unseen)
# get feature transformation
Phi = learner.transform(X_unseen)

You can also call Few from the terminal as

python -m few.few data_file_name 

try python -m few.few --help to see options.

Examples

Check out few_example.py to see how to apply FEW to a regression dataset.

Publications

If you use Few, please reference our publications:

La Cava, W., and Moore, J.H. A general feature engineering wrapper for machine learning using epsilon-lexicase survival. Proceedings of the 20th European Conference on Genetic Programming (EuroGP 2017), Amsterdam, Netherlands. preprint

La Cava, W., and Moore, J.H. Ensemble representation learning: an analysis of fitness and survival for wrapper-based genetic programming methods. GECCO '17: Proceedings of the 2017 Genetic and Evolutionary Computation Conference. Berlin, Germany. arxiv

Acknowledgments

This method is being developed to study the genetic causes of human disease in the Epistasis Lab at UPenn. Work is partially supported by the Warren Center for Network and Data Science. Thanks to Randy Olson and TPOT for Python guidance.

few's People

Contributors

lacava avatar ohjeah avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.