Giter VIP home page Giter VIP logo

leibniz's Introduction

Leibniz

Build Status

Leibniz is a python package which provide facilities to express learnable differential equations with PyTorch

We also provide UNet, ResUNet and their variations, especially the Hyperbolic blocks for ResUNet.

Install

pip install leibniz

How to use

Physics-informed

As an example we solve a very simple advection problem, a box-shaped material transported by a constant steady wind.

moving box

import torch as th
import leibniz as lbnz

from leibniz.core3d.gridsys.regular3 import RegularGrid
from leibniz.diffeq import odeint as odeint


def binary(tensor):
    return th.where(tensor > lbnz.zero, lbnz.one, lbnz.zero)

# setup grid system
lbnz.bind(RegularGrid(
    basis='x,y,z',
    W=51, L=151, H=51,
    east=16.0, west=1.0,
    north=6.0, south=1.0,
    upper=6.0, lower=1.0
))
lbnz.use('x,y,z') # use xyz coordinate

# giving a material field as a box 
fld = binary((lbnz.x - 8) * (9 - lbnz.x)) * \
      binary((lbnz.y - 3) * (4 - lbnz.y)) * \
      binary((lbnz.z - 3) * (4 - lbnz.z))

# construct a constant steady wind
wind = lbnz.one, lbnz.zero, lbnz.zero

# transport value by wind
def derivitive(t, clouds):
    return - lbnz.upwind(wind, clouds)

# integrate the system with rk4
pred = odeint(derivitive, fld, th.arange(0, 7, 1 / 100), method='rk4')

UNet, ResUNet and variations

from leibniz.unet import UNet
from leibniz.nn.layer.hyperbolic import HyperBottleneck
from leibniz.nn.activation import CappingRelu

unet = UNet(6, 1, normalizor='batch', spatial=(32, 64), layers=5, ratio=1,
            vblks=[4, 4, 4, 4, 4], hblks=[1, 1, 1, 1, 1],
            scales=[-1, -1, -1, -1, -1], factors=[1, 1, 1, 1, 1],
            block=HyperBottleneck, relu=CappingRelu(), final_normalized=False)

We provide a ResUNet implementation, which is a UNet variation can insert ResNet blocks between layers. The supported ResNet blocks are include

  • Pure ResNet: Basic, Bottleneck block
  • SENet variations: Basic, Bottleneck block
  • Hyperbolic variations: Basic, Bottleneck block

We support 1d, 2d, 3d UNet.

normalizor are include:

  • batch: BatchNorm
  • layer: LayerNorm
  • instance: InstanceNorm

Other hyperparameters are include:

  • spatial: the sizes of the spatial dimentions
  • ratio: the ratio to decide the intial number of channels into the UNet
  • vblks: how many vertical blocks is inserted between two layers
  • hblks: how many horizontal blocks is inserted in the skip connections
  • scales: scale factors(power-2-based) on the spatial dimentions
  • factors: expand or shrink factors(power-2-based) on the channels
  • final_normalized: wheather to scale to final result between 0 to 1

Piecewise Linear normalizor

Piecewise Linear normalizor provide an learnable monotonic peicewise linear functions and its inverse fucntion. The API is shown as below

from leibniz.nn.normalizor import PWLNormalizor

# on 3 channels, given 128 segmented pieces, and assuming the input data have a zero mean and 1.0 std
pwln = PWLNormalizor(3, 128, mean=0.0, std=1.0)

normed = pwln(input)
output = pwln.inverse(normed)

How to release

python3 setup.py sdist bdist_wheel
python3 -m twine upload dist/*

git tag va.b.c master
git push origin va.b.c

Contributors

Acknowledge

We included source code with minor changes from torchdiffeq by Ricky Chen, because of two purpose:

  1. package torchdiffeq is not indexed by pypi
  2. package torchdiffeq is very convenient and mandatory

All our contribution is based on Ricky's Neural ODE paper (NIPS 2018) and his package.

leibniz's People

Contributors

mountain avatar deepsourcebot avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.