Giter VIP home page Giter VIP logo

ml_malware_detect's Introduction

Machine Learning for Malware Detection

edited by Raymond Luo

Environment

python3
RTX2080 I7 9700K 16G RAM
ubuntu 18.04

Requirement

sudo pip3 install -r requirements.txt

Please put the security_train.xlsx and security_test.xlsx in related floders

Loadfile

python3 loadfile.py

Train multi vision lstm

python3 train_lstm.py

Train LSTM

python3 train_lstm2.py

Train textcnn LSTM

python3 train_lstm3.py

Train CNN

python3 train_textcnn.py

Train tf-idf model

python3 xgboost.py

Stack model

python3 stack_result.py

Result

Result will be in submit floder

FILE PREPROCESS

Data format

label class explain
file_id bigint Number of files
label bigint 文件标签,0-正常/1-勒索病毒/2-挖矿程序/3-DDoS木马/4-蠕虫病毒/5-感染型病毒/6-后门程序/7-木马程序.
api string The API call list of the file.
tid bigint The thread number of the file.
index string The order of the API call.

阿里云安全恶意程序检测

Our method:

Firstly, we grouped the file by ‘file-id’. For each files, we then grouped the API calls by ‘tid’ and sorted the API calls by its ‘index’. Finally, we concatenate each thread to one line to get our final represent of 1 sample.

Sample LdrLoadDll LdrGetProcedureAddress LdrGetProcedureAddress LdrGetProcedureAddress LdrGetProcedureAddress....... label 5

MODEL

For best score we use 5 models and stack them to get our final score.

TF-idf model:

In order to get the whole information of the sample. We firstly extract the TF-idf features of the sample. We extract ‘TF-IDF’ feature after we preprocess the sample with 1-5 gram.

vectorizer = TfidfVectorizer(ngram_range=(1, 5), min_df=3, max_df=0.9, )  # tf-idf特征抽取ngram_range=(1,5)

Then we classify the sample base on XGboost method.

param = {'max_depth': 6, 'eta': 0.1, 'eval_metric': 'mlogloss', 'silent': 1, 'objective': 'multi:softprob',
         'num_class': 8, 'subsample': 0.8,
         'colsample_bytree': 0.85}  # 参数

evallist = [(dtrain, 'train'), (dtest, 'val')]  # 测试 , (dtrain, 'train')
num_round = 300  # 循环次数
bst = xgb.train(param, dtrain, num_round, evallist, early_stopping_rounds=50)

Text cnn model

In this model, we used ‘text cnn’ to extract the features and classify the sample.

Each sample has been cut to maximum 6000 length and encode as one-hot label.

We input the sample to 1 embedding layer then go to the CNN layers.

We used 2,4,6,8,10 5 different kernel sizes, each convolutional layer has 32 filters.

After the cnn layers, we concatenate the feature extracted by CNN layers and classify them.

main_input = Input(shape=(maxlen,), dtype='float64')
_embed = Embedding(304, 256, input_length=maxlen)(main_input)
_embed = SpatialDropout1D(0.25)(_embed)
warppers = []
num_filters = 64
kernel_size = [2, 3, 4, 5]
conv_action = 'relu'
for _kernel_size in kernel_size:
    for dilated_rate in [1, 2, 3, 4]:
        conv1d = Conv1D(filters=num_filters, kernel_size=_kernel_size, activation=conv_action,
                        dilation_rate=dilated_rate)(_embed)
        warppers.append(GlobalMaxPooling1D()(conv1d))

fc = concatenate(warppers)
fc = Dropout(0.5)(fc)
# fc = BatchNormalization()(fc)
fc = Dense(256, activation='relu')(fc)
fc = Dropout(0.25)(fc)
# fc = BatchNormalization()(fc)
preds = Dense(8, activation='softmax')(fc)

model = Model(inputs=main_input, outputs=preds)

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
return model

CNN_LSTM model

In order to get the sequence information of the sample. We used 3 LSTM based model.

The first one is simple CNN+LSTM. All cnn layer has the same kernel size.

 main_input = Input(shape=(maxlen,), dtype='float64')
    embedder = Embedding(304, 256, input_length=maxlen)
    embed = embedder(main_input)
    # avg = GlobalAveragePooling1D()(embed)
    # cnn1模块,kernel_size = 3
    conv1_1 = Conv1D(64, 3, padding='same', activation='relu')(embed)

    conv1_2 = Conv1D(64, 3, padding='same', activation='relu')(conv1_1)

    cnn1 = MaxPool1D(pool_size=2)(conv1_2)
    conv1_1 = Conv1D(64, 3, padding='same', activation='relu')(cnn1)

    conv1_2 = Conv1D(64, 3, padding='same', activation='relu')(conv1_1)

    cnn1 = MaxPool1D(pool_size=2)(conv1_2)
    conv1_1 = Conv1D(64, 3, padding='same', activation='relu')(cnn1)

    conv1_2 = Conv1D(64, 3, padding='same', activation='relu')(conv1_1)

    cnn1 = MaxPool1D(pool_size=2)(conv1_2)
    rl = CuDNNLSTM(256)(cnn1)
    # flat = Flatten()(cnn3)
    # drop = Dropout(0.5)(flat)
    fc = Dense(256)(rl)

    main_output = Dense(8, activation='softmax')(rl)
    model = Model(inputs=main_input, outputs=main_output)
    return model

Mulit vision LSTM

Inspired by out text cnn method. We thought that if different kernel size can have different versions why can we have a mulit version LSTM model. So we first use 3,5,7 3 different kerner sizes. In spite of arrange them as linner order, we use them to extract the features from the embedding layer independly. Between each lyayer we used averge pooling instead of max pooling to get more information of the sequence rather than only one API call. After the CNN layers we have three feature vectors which have same size. We then use
$$ max_{elements}(v_1,v_2,v_3) $$ in order to get the most significant feature in different version. After that we used LSTM layer to analyze the sequence and classify it.

embed_size = 256
    num_filters = 64
    kernel_size = [3, 5, 7]
    main_input = Input(shape=(maxlen,))
    emb = Embedding(304, 256, input_length=maxlen)(main_input)
    # _embed = SpatialDropout1D(0.15)(emb)
    warppers = []
    warppers2 = []  # 0.42
    warppers3 = []
    for _kernel_size in kernel_size:
        conv1d = Conv1D(filters=num_filters, kernel_size=_kernel_size, activation='relu', padding='same')(emb)
        warppers.append(AveragePooling1D(2)(conv1d))
    for (_kernel_size, cnn) in zip(kernel_size, warppers):
        conv1d_2 = Conv1D(filters=num_filters, kernel_size=_kernel_size, activation='relu', padding='same')(cnn)
        warppers2.append(AveragePooling1D(2)(conv1d_2))
    for (_kernel_size, cnn) in zip(kernel_size, warppers2):
        conv1d_2 = Conv1D(filters=num_filters, kernel_size=_kernel_size, activation='relu', padding='same')(cnn)
        warppers3.append(AveragePooling1D(2)(conv1d_2))
    fc = Maximum()(warppers3)
    rl = CuDNNLSTM(512)(fc)
    main_output = Dense(8, activation='softmax')(rl)
    model = Model(inputs=main_input, outputs=main_output)
    return model

Text cnn lstm

This model is mostly as same as multi version LSTM but we concatenate the 3 feature in order. Because we think this method did't affect the order of the sequence. In each part the order of API calls did't change.

main_input = Input(shape=(maxlen,), dtype='float64')

    embedder = Embedding(304, 256, input_length=maxlen)
    embed = embedder(main_input)
    # cnn1模块,kernel_size = 3
    conv1_1 = Conv1D(16, 3, padding='same')(embed)
    bn1_1 = BatchNormalization()(conv1_1)
    relu1_1 = Activation('relu')(bn1_1)
    conv1_2 = Conv1D(32, 3, padding='same')(relu1_1)
    bn1_2 = BatchNormalization()(conv1_2)
    relu1_2 = Activation('relu')(bn1_2)
    cnn1 = MaxPool1D(pool_size=4)(relu1_2)
    # cnn2模块,kernel_size = 4
    conv2_1 = Conv1D(16, 4, padding='same')(embed)
    bn2_1 = BatchNormalization()(conv2_1)
    relu2_1 = Activation('relu')(bn2_1)
    conv2_2 = Conv1D(32, 4, padding='same')(relu2_1)
    bn2_2 = BatchNormalization()(conv2_2)
    relu2_2 = Activation('relu')(bn2_2)
    cnn2 = MaxPool1D(pool_size=4)(relu2_2)
    # cnn3模块,kernel_size = 5
    conv3_1 = Conv1D(16, 5, padding='same')(embed)
    bn3_1 = BatchNormalization()(conv3_1)
    relu3_1 = Activation('relu')(bn3_1)
    conv3_2 = Conv1D(32, 5, padding='same')(relu3_1)
    bn3_2 = BatchNormalization()(conv3_2)
    relu3_2 = Activation('relu')(bn3_2)
    cnn3 = MaxPool1D(pool_size=4)(relu3_2)
    # 拼接三个模块
    cnn = concatenate([cnn1, cnn2, cnn3], axis=-1)
    lstm = CuDNNLSTM(256)(cnn)
    f = Flatten()(cnn1)
    fc = Dense(256, activation='relu')(f)
    D = Dropout(0.5)(fc)
    main_output = Dense(8, activation='softmax')(lstm)
    model = Model(inputs=main_input, outputs=main_output)
    return model

Stack result

We stack the results of the model mentioned above.

train = np.hstack([tfidf_train_result, textcnn_train_result, mulitl_version_lstm_train_result, cnn_train_result,
                   textcnn_lstm_train_result])
test = np.hstack(
    [tfidf_out_result, textcnn_out_result, mulitl_version_lstm_test_result, cnn_out_result, textcnn_lstm_test_result])
meta_test = np.zeros(shape=(len(outfiles), 8))
skf = StratifiedKFold(n_splits=5, random_state=4, shuffle=True)
dout = xgb.DMatrix(test)
for i, (tr_ind, te_ind) in enumerate(skf.split(train, labels)):
    print('FOLD: {}'.format(str(i)))
    X_train, X_train_label = train[tr_ind], labels[tr_ind]
    X_val, X_val_label = train[te_ind], labels[te_ind]
    dtrain = xgb.DMatrix(X_train, label=X_train_label)
    dtest = xgb.DMatrix(X_val, X_val_label)  # label可以不要,此处需要是为了测试效果

    param = {'max_depth': 6, 'eta': 0.01, 'eval_metric': 'mlogloss', 'silent': 1, 'objective': 'multi:softprob',
             'num_class': 8, 'subsample': 0.9,
             'colsample_bytree': 0.85}  # 参数
    evallist = [(dtrain, 'train'), (dtest, 'val')]  # 测试 , (dtrain, 'train')
    num_round = 10000  # 循环次数
    bst = xgb.train(param, dtrain, num_round, evallist, early_stopping_rounds=100)
    preds = bst.predict(dout)
    meta_test += preds

meta_test /= 5.0
result = meta_test

ml_malware_detect's People

Contributors

rmanluo avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.