Giter VIP home page Giter VIP logo

sundials.jl's Introduction

Sundials.jl

Join the chat at https://gitter.im/JuliaDiffEq/Lobby Sundials Sundials Travis AppVoyer Coveralls

Introduction

Sundials.jl is a Julia package that interfaces to the Sundials library. Sundials (the C library and this package) provides the following:

  • CVODES - for integration and sensitivity analysis of ODEs. CVODES treats stiff and nonstiff ODE systems of the form y' = f(t,y,p), y(t0) = y0(p), where p is a set of parameters.
  • IDAS - for integration and sensitivity analysis of DAEs. IDAS treats DAE systems of the form F(t,y,y',p) = 0, y(t0) = y0(p), y'(t0) = y0'(p)
  • KINSOL - for solution of nonlinear algebraic systems. KINSOL treats nonlinear systems of the form F(u) = 0

Note that CVODES and IDAS contain all functions provided by CVODE and IDA (for integration without sensitivity analysis). If you need to use the latter, you can set enable_sensitivities=false in deps/build.jl and (re)build the package.

Julia is a fast, Matlab-like language that is well suited to modeling and simulations. It's particularly suited for use with Sundials because the functions representing the system will run at nearly the speed of C functions. Julia functions are compiled on the fly (JIT), so it is also possible to quickly recompile a system to model structural changes to the system.

I use Sundials in Sims, a Julia package to support equation-based modeling for simulations. Sims is like a lite version of Modelica. Sims can currently use Sundials or DASSL.

Installation

Within Julia, use the package manager:

Pkg.add("Sundials")

This should download and install the Sundials libraries and register the package. On Windows precompiled binaries are used, while on Unix and OSX Sundials is built from its sources (provided the necessary tools are available). If you have Sundials already installed, make sure that Julia can find it, e.g., via

push!(Sys.DL_LOAD_PATH, "/opt/local/lib")

before you install the package. Downloading and/or re-building of the library can be triggered by Pkg.build("Sundials") if anything goes wrong.

To test the installation use

Pkg.test("Sundials")

which currently runs some of the examples in the examples directory.

API

This package closely follows the Sundials C API. At a slightly higher level, many (but not all) Sundials.jl functions support passing Julia objects (like Arrays) instead of Sundials objects (like N_Vectors). See src/Sundials.jl for examples of how the higher-level interfacing works.

The Julia package Clang.jl was used to wrap Sundials. This directly uses Sundials' headers sort-of like SWIG. This is great work by Isaiah--it didn't take me much work to package a pretty complete interface to Sundials. For the wrapping code, see src/wrap_sundials.jl.

Because of Clang.jl, Sundials.jl provides good coverage of the Sundials library (the serial version).

Simplified Functions

Three functions kinsol, cvode, and idasol are provided as high-level, very simple functions. Note that the latter two functions were previously called ode and ida. Here is an example for cvode:

using Sundials

function f(t, y, ydot)
    ydot[1] = -0.04*y[1] + 1.0e4*y[2]*y[3]
    ydot[3] = 3.0e7*y[2]*y[2]
    ydot[2] = -ydot[1] - ydot[3]
end

t = [0.0, 4 * logspace(-1., 7., 9)]
res = Sundials.cvode(f, [1.0, 0.0, 0.0], t)

For cvode, there is an optional positional argument integrator to choose between the two provided integration options: :BDF for a Backwards Differentiation Formula method and :Adams for an Adams-Moulton method. There are two supported keyword arguments, reltol, and abstol, for cvode and idasol. For more details, please see the docstrings.

Examples

See the examples directory.

Three-Body Problem is a notebook with a more thoroughly explained example.

Status

Please note that this is a developer preview. There could be bugs, and everything is subject to change. Of note are:

  • The API that matches the Sundials C API should be stable.
  • The simplified API is not stable.
  • There is no documentation for this package. Please see the general C documentation for Sundials. The API should be identical.
  • Macros like DENSE_ELEM are not available.
  • Nothing is (yet) exported from the module. You need to put Sundials. in front of everything.
  • Parts of the Sundials API that access C structures are difficult. One can use the StrPack package to read or write to these structures, but nothing is built into this package. See this CVODE example.
  • The parallel versions of Sundials have been wrapped, but I doubt that they are usable from Julia. They need to be integrated with MPI.jl
  • More work could be done to provide a better interface to N_Vectors.

sundials.jl's People

Contributors

acroy avatar alyst avatar ararslan avatar axsk avatar chrisrackauckas avatar christianhaargaard avatar heflwi avatar iainnz avatar ignamv avatar iraikov avatar ivarne avatar jakebolewski avatar jgoldfar avatar jiahao avatar mauro3 avatar njwilson23 avatar papamarkou avatar pjpmarques avatar powerdistribution avatar stevengj avatar tkelman avatar toivoh avatar tshort avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.