Giter VIP home page Giter VIP logo

polars-coord-transforms's Introduction

The Project

This Polars plugin provides functionality which can be loosely described as tranformation of coordinates and extraction of features from them.

It contains functions which were needed in personal and work projects, therefore its set of features might appear a bit random. Nevertheless one can find it useful in projects related to robotics, geospatial science, spatial analytics etc.

The functions are divided among three namespaces: transform, s2, distance:

  • transform namespace contains functions for converting coordinates from\to map, ecef, lla, utm reference frames.

  • s2 namespace contains functions which allow to work with S2 Cells

  • distance namespace allows to calculate distances between coordinates.

This plugin presupposes that coordianates represent points in space and that they are expressed with struct datatype in Polars.

Getting Started

Installation

pip install polars-coord-transforms

Usage

import polars_coord_transforms

In order to use plugin, coordinates should be represented as struct with fields x, y, z (or, in case of LLA-points: lon, lat, alt)!

For instance, if coordinates are in separate columns, one can make a valid struct with pl.struct native Polars function:

import polars as pl

df = pl.DataFrame(
    dict(
            lon=[31.409197919000064,],
            lat=[58.860667429000046,],
            alt=[57.309668855211015,],
        )
)

df.with_columns(
    point=pl.struct("lon", "lat", "alt")
)

Examples

Suppose we have the following DataFrame with some coordinates (column "pose"), rotation quaternion (column "rotation") and offset vector (column "offset"):


import polars as pl

df = pl.DataFrame(
    [
        pl.Series("pose", [{'x': 4190.66735544079, 'y': 14338.862844330957, 'z': 10.96391354687512}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("rotation", [{'x': 0.13007119, 'y': 0.26472049, 'z': 0.85758219, 'w': 0.42137553}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64, 'w': pl.Float64})),
        pl.Series("offset", [{'x': 2852423.40536658, 'y': 2201848.41975346, 'z': 5245234.74365368}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
print(df)


shape: (1, 3)
┌─────────────────────────────┬───────────────────────────┬───────────────────────────────────┐
│ pose                        ┆ rotation                  ┆ offset                            │
│ ---                         ┆ ---                       ┆ ---                               │
│ struct[3]                   ┆ struct[4]                 ┆ struct[3]                         │
╞═════════════════════════════╪═══════════════════════════╪═══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {0.130,0.265,0.858,0.421} ┆ {2852423.405,2201848.420,5245234… │
└─────────────────────────────┴───────────────────────────┴───────────────────────────────────┘

transform

Transform coordinates from map reference frame to ECEF (Earth-Ceneterd, Earth-Fixed) coordinate system using a rotation quaternion and an offset vector.
df.with_columns(
    ecef=pl.col("pose").transform.map_to_ecef(
        pl.col("rotation"), pl.col("offset")
    )
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ rotation               ┆ offset                 ┆ ecef                  │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[4]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {0.130,0.265,0.858,0.4 ┆ {2852423.405,2201848.4 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 21}                    ┆ 20,5245234…            ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Inverse transformation from ECEF to map
df.with_columns(
    pose_new=pl.col("ecef").transform.ecef_to_map("rotation", "offset")
).select(
    "pose",
    "pose_new"
)


shape: (1, 5)
┌───────────────────┬───────────────────┬───────────────────┬───────────────────┬──────────────────┐
│ pose              ┆ rotation          ┆ offset            ┆ ecef              ┆ pose_new         │
│ ---               ┆ ---               ┆ ---               ┆ ---               ┆ ---              │
│ struct[3]         ┆ struct[4]         ┆ struct[3]         ┆ struct[3]         ┆ struct[3]        │
╞═══════════════════╪═══════════════════╪═══════════════════╪═══════════════════╪══════════════════╡
│ {4190.667,14338.8 ┆ {0.130,0.265,0.85 ┆ {2852423.405,2201 ┆ {2840491.941,2197 ┆ {4190.667,14338. │
│ 63,10.964}        ┆ 8,0.421}          ┆ 848.420,5245234…  ┆ 932.225,5253325…  ┆ 863,10.964}      │
└───────────────────┴───────────────────┴───────────────────┴───────────────────┴──────────────────┘

Transform coordinates from ECEF to LLA (Longitude, Latitude, Altitude)
df.with_columns(
    lla=pl.col("ecef").transform.ecef_to_lla()
)

shape: (1, 3)
┌─────────────────────────────┬───────────────────────────────────┬─────────────────────────┐
│ pose                        ┆ ecef                              ┆ lla                     │
│ ---                         ┆ ---                               ┆ ---                     │
│ struct[3]                   ┆ struct[3]                         ┆ struct[3]               │
╞═════════════════════════════╪═══════════════════════════════════╪═════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {2840491.941,2197932.225,5253325… ┆ {37.732,55.820,163.916} │
└─────────────────────────────┴───────────────────────────────────┴─────────────────────────┘

Inverse transform from LLA to ECEF
df.with_columns(
    ecef_new=pl.col("lla").transform.lla_to_ecef()
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ ecef                   ┆ lla                    ┆ ecef_new              │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[3]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {2840491.941,2197932.2 ┆ {37.732,55.820,163.916 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 25,5253325…            ┆ }                      ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Transform coordinates from LLA to UTM coordinates (UTM zone is derived from coordinates themselves)
df.with_columns(
    utm=pl.col("lla").transform.lla_to_utm()
)


shape: (1, 3)
┌─────────────────────────────┬─────────────────────────┬──────────────────────────────────┐
│ pose                        ┆ lla                     ┆ utm                              │
│ ---                         ┆ ---                     ┆ ---                              │
│ struct[3]                   ┆ struct[3]               ┆ struct[3]                        │
╞═════════════════════════════╪═════════════════════════╪══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} │
└─────────────────────────────┴─────────────────────────┴──────────────────────────────────┘
Find UTM zone number from a LLA point
df.with_columns(
    utm_zone_number=pl.col("lla").transform.lla_to_utm_zone_number()
)

shape: (1, 3)
┌─────────────────────────┬──────────────────────────────────┬─────────────────┐
│ lla                     ┆ utm                              ┆ utm_zone_number │
│ ---                     ┆ ---                              ┆ ---             │
│ struct[3]               ┆ struct[3]                        ┆ u8              │
╞═════════════════════════╪══════════════════════════════════╪═════════════════╡
│ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} ┆ 37              │
└─────────────────────────┴──────────────────────────────────┴─────────────────┘

Transform quaternion to Euler angles (roll, pitch, yaw)

the function returns a struct with 3 fields:"roll", "pitch", "yaw"

df.select(
    euler_angles=pl.col("rotation").transform.quat_to_euler_angles()
)

┌──────────────────────────────┐
│ euler_angles                 │
│ ---                          │
│ struct[3]                    │
╞══════════════════════════════╡
│ {0.598806,0.000000,2.228181} │
└──────────────────────────────┘

s2

Find S2 CellID of a point with longitude and latitude (with a given cell level)
df.select(
    cellid_30=pl.col("lla").s2.lonlat_to_cellid(level=30),
    cellid_28=pl.col("lla").s2.lonlat_to_cellid(level=28),
    cellid_5=pl.col("lla").s2.lonlat_to_cellid(level=5),
)


shape: (1, 3)
┌─────────────────────┬─────────────────────┬─────────────────────┐
│ cellid_30           ┆ cellid_28           ┆ cellid_5            │
│ ---                 ┆ ---                 ┆ ---                 │
│ u64                 ┆ u64                 ┆ u64                 │
╞═════════════════════╪═════════════════════╪═════════════════════╡
│ 5095036114269810839 ┆ 5095036114269810832 ┆ 5094697078462873600 │
└─────────────────────┴─────────────────────┴─────────────────────┘
Find longitude and latitude from a S2 CellID
df.select(
    lla_cell=pl.lit(5095036114269810839, dtype=pl.UInt64()).s2.cellid_to_lonlat()
)

shape: (1, 1)
┌─────────────────┐
│ lla_cell        │
│ ---             │
│ struct[2]       │
╞═════════════════╡
│ {37.732,55.820} │
└─────────────────┘

Find whether a given LLA point is in a S2 Cell identified by a specific ID
df.select(
    lla",
    cellid=pl.lit(5095036114269810832, dtype=pl.UInt64()),
    is_in_cell=pl.lit(5095036114269810832, dtype=pl.UInt64()).s2.cell_contains_point(pl.col("lla"))
)


shape: (1, 3)
┌─────────────────────────┬─────────────────────┬────────────┐
│ lla                     ┆ cellid              ┆ is_in_cell │
│ ---                     ┆ ---                 ┆ ---        │
│ struct[3]               ┆ u64                 ┆ bool       │
╞═════════════════════════╪═════════════════════╪════════════╡
│ {37.732,55.820,163.916} ┆ 5095036114269810832 ┆ true       │
└─────────────────────────┴─────────────────────┴────────────┘
Find vertices of a S2 Cell from a CellID
df.with_columns(
    cellid=pl.col("lla").s2.lonlat_to_cellid(level=5),
).with_columns(
    vertices=pl.col("cellid").s2.cellid_to_vertices()
)

shape: (1, 4)
┌─────────────────────────┬─────────────────────────┬─────────────────────┬────────────────────────┐
│ pose                    ┆ lla                     ┆ cellid              ┆ vertices               │
│ ---                     ┆ ---                     ┆ ---                 ┆ ---                    │
│ struct[3]               ┆ struct[3]               ┆ u64                 ┆ struct[8]              │
╞═════════════════════════╪═════════════════════════╪═════════════════════╪════════════════════════╡
│ {4190.667,14338.863,10. ┆ {37.732,55.820,163.916} ┆ 5094697078462873600 ┆ {37.304,55.491,40.932, │
│ 964}                    ┆                         ┆                     ┆ 57.545,36.…            │
└─────────────────────────┴─────────────────────────┴─────────────────────┴────────────────────────┘

df.select("vertices").unnest("vertices")

shape: (1, 8)
┌────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
│ v0_lon ┆ v0_lat ┆ v1_lon ┆ v1_lat ┆ v2_lon ┆ v2_lat ┆ v3_lon ┆ v3_lat │
│ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    │
│ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    │
╞════════╪════════╪════════╪════════╪════════╪════════╪════════╪════════╡
│ 37.304 ┆ 55.491 ┆ 40.932 ┆ 57.545 ┆ 36.495 ┆ 59.135 ┆ 33.024 ┆ 56.886 │
└────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘

distance

df = pl.DataFrame(
    [
        pl.Series("point_1", [{'x': -8893.663914126577, 'y': 19116.178523519542, 'z': 14.98697863612324}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("point_2", [{'x': 1553.3742543335538, 'y': 2916.118342842441, 'z': 15.580027717165649}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
Find Euclidean distance between two points using all 3 components of a point-vector
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using all 3 components of a point-vector
df.with_columns(
    cosine_sim=pl.col("point_1").distance.cosine_similarity_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘
Find Euclidean distance between two points using 2 components of a point-vector (X and Y)
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_2d(pl.col("point_2"))
)

┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using 2 components of a point-vector (X and Y)
shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘

polars-coord-transforms's People

Contributors

georgypv avatar

Stargazers

 avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.