Giter VIP home page Giter VIP logo

ssd's Introduction

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Pdf: https://openreview.net/forum?id=v5gjXpmR8J

Code for our ICLR 2021 paper on outlier detection, titled SSD, without requiring class labels of in-distribution training data. We leverage recent advances in self-supervised representation learning followed by the cluster-based outlier detection to achieve competitive performance. This repository support both self-supervised training of networks and outlier detection evaluation of pre-trained networks. It also includes code for the two proposed extensions in the paper, i.e., 1) Few-shot outlier detection and 2) Extending SSD by including class labels, when available.

Getting started

Let's start by installing all dependencies.

pip install -r requirement.txt

Outlier detection with a pre-trained classifier

This is how we can evaluate the performance of a pre-trained ResNet50 classifier trained using SimCLR on the CIFAR-10 dataset.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --exp-name name_of_this_experiment

  • training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose the right network modules for the checkpoint.
  • arch: Choose from available architectures in models.py
  • dataset: Choose from ("cifar10", "cifar100", "svhn", "stl")
  • --normalize: If set, it will normalize input images. Use only if inputs were normalized in training too.
  • --exp-name: Experiment name. We will log results into a text file of this name.

The steps to evaluate with $SSD_k$ are exactly the same, except that now you have to also provide values for k and copies . k refers to how many outliers are available from each class of targeted OOD datasets while copies refers to the number of transformed instances created per available outlier image.

CUDA_VISIBLE_DEVICES=$gpu_id python -u eval_ssdk.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --k 5 --copies 10

Training a classifier using self-supervised/supervised learning

We also support training a classifier using self-supervised, supervised or a combination of both training methods. Here is an example script to train a ResNet50 network on the CIFAR-10 dataset using SimCLR.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u train.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --results-dir directory_to_save_checkpoint --exp-name name_of_this_experiment --warmup --normalize

  • --training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose appropriate network modules, loss functions, and trainers.
  • --warmup: We recommend using warmup when batch-size is large, which is often the case for self-supervised methods.

Choices for other arguments are similar to what we mentioned earlier in the evaluation section.

Pre-trained models

Here is the link to pre-trained models on cifar-10 dataset: https://drive.google.com/drive/folders/1Nx5tYGecvwagVz7_y8Z3FPk-ZtYttM4k?usp=sharing

These models aren't exactly identical to ones in the paper but they give fairly similar results. Here is my attempt at doing OOD detection with the SimCLR trained models on CIFAR10. CUDA_VISIBLE_DEVICES=0 python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --normalize --ckpt ./cifar10/base1/SimCLR_cifar10_resnet50_lr_0.5_decay_0.0001_bsz_900_temp_0.5_trial_0_ps__cosine_warm/last.pth

It gives the following results, which is fairly similar to ones in the paper. Most likely mistake, which gives suboptimal results, is to miss --normalize (when the model is trained with it).

In-data = cifar10, OOD = cifar100, Clusters = 1, FPR95 = 0.5078, AUROC = 0.9063240349999999, AUPR = 0.8919609510086947
In-data = cifar10, OOD = svhn, Clusters = 1, FPR95 = 0.020666871542716656, AUROC = 0.9962383988936693, AUPR = 0.9985624119973668
In-data = cifar10, OOD = texture, Clusters = 1, FPR95 = 0.14645390070921985, AUROC = 0.9761002304964539, AUPR = 0.9556574287665671
In-data = cifar10, OOD = blobs, Clusters = 1, FPR95 = 0.0467, AUROC = 0.9879078399999999, AUPR = 0.9843056376364349

Reference

If you find this work helpful, consider citing it.

@inproceedings{sehwag2021ssd,
  title={SSD:  A Unified Framework for Self-Supervised Outlier Detection},
  author={Vikash Sehwag and Mung Chiang and Prateek Mittal},
 booktitle={International Conference on Learning Representations},
 year={2021},
 url={https://openreview.net/forum?id=v5gjXpmR8J}
}

ssd's People

Contributors

vsehwag avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.