Giter VIP home page Giter VIP logo

pytorch_spline_conv's Introduction

Spline-Based Convolution Operator of SplineCNN

PyPI Version Build Status Code Coverage


This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)

The operator works on all floating point data types and is implemented both for CPU and GPU.

Installation

Ensure that at least PyTorch 0.4.1 is installed and verify that cuda/bin and cuda/include are in your $PATH and $CPATH respectively, e.g.:

$ python -c "import torch; print(torch.__version__)"
>>> 0.4.1

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
>>> /usr/local/cuda/include:...

Then run:

pip install torch-spline-conv

If you are running into any installation problems, please create an issue. Be sure to import torch first before using this package to resolve symbols the dynamic linker must see.

Usage

from torch_spline_conv import SplineConv

out = SplineConv.apply(x,
                       edge_index,
                       pseudo,
                       weight,
                       kernel_size,
                       is_open_spline,
                       degree=1,
                       norm=True,
                       root_weight=None,
                       bias=None)

Applies the spline-based convolution operator

over several node features of an input graph. The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.

Parameters

  • x (Tensor) - Input node features of shape (number_of_nodes x in_channels).
  • edge_index (LongTensor) - Graph edges, given by source and target indices, of shape (2 x number_of_edges).
  • pseudo (Tensor) - Edge attributes, ie. pseudo coordinates, of shape (number_of_edges x number_of_edge_attributes) in the fixed interval [0, 1].
  • weight (Tensor) - Trainable weight parameters of shape (kernel_size x in_channels x out_channels).
  • kernel_size (LongTensor) - Number of trainable weight parameters in each edge dimension.
  • is_open_spline (ByteTensor) - Whether to use open or closed B-spline bases for each dimension.
  • degree (int, optional) - B-spline basis degree. (default: 1)
  • norm (bool, optional): Whether to normalize output by node degree. (default: True)
  • root_weight (Tensor, optional) - Additional shared trainable parameters for each feature of the root node of shape (in_channels x out_channels). (default: None)
  • bias (Tensor, optional) - Optional bias of shape (out_channels). (default: None)

Returns

  • out (Tensor) - Out node features of shape (number_of_nodes x out_channels).

Example

import torch
from torch_spline_conv import SplineConv

x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
degree = 1  # B-spline degree of 1
norm = True  # Normalize output by node degree.
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
bias = None  # do not apply an additional bias

out = SplineConv.apply(x, edge_index, pseudo, weight, kernel_size,
                       is_open_spline, degree, norm, root_weight, bias)

print(out.size())
torch.Size([4, 4])  # 4 nodes with 4 features each

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018},
}

Running tests

python setup.py test

pytorch_spline_conv's People

Contributors

rusty1s avatar janericlenssen avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.