Giter VIP home page Giter VIP logo

deeplearning-biology's Introduction

deeplearning-biology

This is a list of implementations of deep learning methods to biology, originally published on Follow the Data. There is a slant towards genomics because that's the subfield that I follow most closely.

Please, contribute to this growing list, especially in categories that I haven't covered well! Also, do add your contributions to GitXiv as well if you can.

You might also want to refer to the awesome deepbio list.

Cheminformatics

Neural graph fingerprints [github][gitxiv]

A convolutional net that can learn features which are useful for predicting properties of novel molecules; “molecular fingerprints”. The net works on a graph where atoms are nodes and bonds are edges. Developed by the group of Ryan Adams, who co-hosts the very good Talking Machines podcast.

Proteomics

Pcons2 – Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns [web interface]

Here, a “deep random forest” with five layers is used to improve predictions of which residues (amino acids) in a protein are physically interacting which each other. This is useful for predicting the overall structure of the protein (a very hard problem.)

Genomics

This category is divided into several subfields.

Gene expression

In modeling gene expression, the inputs are typically numerical values (integers or floats) estimating how much RNA is produced from a DNA template in a particular cell type or condition.

ADAGE – Analysis using Denoising Autoencoders of Gene Expression [github][gitxiv]

This is a Theano implementation of stacked denoising autoencoders for extracting relevant patterns from large sets of gene expression data, a kind of feature construction approach if you will. I have played around with this package quite a bit myself. The authors initially published a conference paper applying the model to a compendium of breast cancer (microarray) gene expression data, and more recently posted a paper on bioRxiv where they apply it to all available expression data (microarray and RNA-seq) on the pathogen Pseudomonas aeruginosa. (I understand that this manuscript will soon be published in a journal.)

Learning structure in gene expression data using deep architectures [paper]

This is also about using stacked denoising autoencoders for gene expression data, but there is no available implementation (as far as I could tell). Included here for the sake of completeness (or something.)

Gene expression inference with deep learning [github][paper]

This deals with a specific prediction task, namely to predict the expression of specified target genes from a panel of about 1,000 pre-selected “landmark genes”. As the authors explain, gene expression levels are often highly correlated and it may be a cost-effective strategy in some cases to use such panels and then computationally infer the expression of other genes. Based on Pylearn2/Theano.

Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model [paper]

The authors use stacked autoencoders to learn biological features in yeast from thousands of microarrays. They analyze the hidden layer representations and show that these encode biological information in a hierarchical way, so that for instance transcription factors are represented in the first hidden layer.

Predicting enhancers and regulatory regions

Here the inputs are typically “raw” DNA sequence, and convolutional networks (or layers) are often used to learn regularities within the sequence. Hat tip to Melissa Gymrek for pointing out some of these.

DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences [github][gitxiv]

Made for predicting the function of non-protein coding DNA sequence. Uses a convolution layer to capture regulatory motifs (i e single DNA snippets that control the expression of genes, for instance), and a recurrent layer (of the LSTM type) to try to discover a “grammar” for how these single motifs work together. Based on Keras/Theano.

Basset – learning the regulatory code of the accessible genome with deep convolutional neural networks [github][gitxiv]

Based on Torch, this package focuses on predicting the accessibility (or “openness”) of the chromatin – the physical packaging of the genetic information (DNA+associated proteins). This can exist in more condensed or relaxed states in different cell types, which is partly influenced by the DNA sequence (not completely, because then it would not differ from cell to cell.)

DeepSEA – Predicting effects of noncoding variants with deep learning–based sequence model [web server][paper]

Like the packages above, this one also models chromatin accessibility as well as the binding of certain proteins (transcription factors) to DNA and the presence of so-called histone marks that are associated with changes in accessibility. This piece of software seems to focus a bit more explicitly than the others on predicting how single-nucleotide mutations affect the chromatin structure. Published in a high-profile journal (Nature Methods).

DeepBind – Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [code][paper]

This is from the group of Brendan Frey in Toronto, and the authors are also involved in the company Deep Genomics. DeepBind focuses on predicting the binding specificities of DNA-binding or RNA-binding proteins, based on experiments such as ChIP-seq, ChIP-chip, RIP-seq, protein-binding microarrays, and HT-SELEX. Published in a high-profile journal (Nature Biotechnology.)

PEDLA: predicting enhancers with a deep learning-based algorithmic framework [code][paper]

This package is for predicting enhancers (stretches of DNA that can enhance the expression of a gene under certain conditions or in a certain kind of cell, often working at a distance from the gene itself) based on heterogeneous data from (e.g.) the ENCODE project, using 1,114 features altogether.

DEEP: a general computational framework for predicting enhancers [paper][code]

An ensemble prediction method for enhancers.

Genome-Wide Prediction of cis-Regulatory Regions Using Supervised Deep Learning Methods (and several other papers applying various kinds of deep networks to regulatory region prediction) [code(one ][paper] out of several)

Wyeth Wasserman’s group have made a kind of toolkit (based on the Theano tutorials) for applying different kinds of deep learning architectures to cis-regulatory element (DNA stretches that can modulate the expression of a nearby gene) prediction. They use a specific “feature selection layer” in their nets to restrict the number of features in the models. This is implemented as an additional sparse one-to-one linear layer between the input layer and the first hidden layer of a multi-layer perceptron.

###Methylation

Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks [paper][web server]

This implementation uses a stacked autoencoder with a supervised layer on top of it to predict whether a certain type of genomic region called “CpG islands” (stretches with an overrepresentation of a sequence pattern where a C nucleotide is followed by a G) is methylated (a chemical modification to DNA that can modify its function, for instance methylation in the vicinity of a gene is often but not always related to the down-regulation or silencing of that gene.) This paper uses a network structure where the hidden layers in the autoencoder part have a much larger number of nodes than the input layer, so it would have been nice to read the authors’ thoughts on what the hidden layers represent.

Single-cell applications

CellCnn – Representation Learning for detection of disease-associated cell subsets [code][paper]

This is a convolutional network (Lasagne/Theano) based approach for “Representation Learning for detection of phenotype-associated cell subsets.” It is interesting because most neural network approaches for high-dimensional molecular measurements (such as those in the gene expression category above) have used autoencoders rather than convolutional nets.

DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation[paper]

Describes autoencoder approaches (stacked AE and multi-AE) to gating (assigning cells into discrete groups) with mass cytometry (CyTOF).

Population genetics

Deep learning for population genetic inference [paper]

No implementation available yet but says an open-source one will be made available soon.

Neuroscience

There are potentially lots of implementations that could go here.

Deep learning for neuroimaging: a validation study [paper]

SPINDLE: SPINtronic deep learning engine for large-scale neuromorphic computing [paper]

deeplearning-biology's People

Contributors

hussius avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.