Giter VIP home page Giter VIP logo

ktrain's Introduction

News and Announcements

  • Coming Soon:
    • better support for custom data formats and models
    • support for using ktrain with tf.keras
  • 2019-10-16:

ktrain

ktrain is a lightweight wrapper for the deep learning library Keras to help build, train, and deploy neural networks. With only a few lines of code, ktrain allows you to easily and quickly:

Tutorials

Please see the following tutorial notebooks for a guide on how to use ktrain on your projects:

Some blog tutorials about ktrain are shown below:

ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks

BERT Text Classification in 3 Lines of Code

Explainable AI in Practice

Using ktrain on Google Colab? See this simple demo of Multiclass Text Classification with BERT.

Tasks such as text classification and image classification can be accomplished easily with only a few lines of code.

Example: Text Classification of IMDb Movie Reviews Using BERT

import ktrain
from ktrain import text as txt

# load data
(x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500, 
                                                                     preprocess_mode='bert',
                                                                     train_test_names=['train', 'test'],
                                                                     classes=['pos', 'neg'])

# load model
model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, 
                             train_data=(x_train, y_train), 
                             val_data=(x_test, y_test), 
                             batch_size=6)

# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate

# train using 1cycle learning rate schedule for 3 epochs
learner.fit_onecycle(2e-5, 3) 

Example: Classifying Images of Dogs and Cats Using a Pretrained ResNet50 model

import ktrain
from ktrain import vision as vis

# load data
(train_data, val_data, preproc) = vis.images_from_folder(
                                              datadir='data/dogscats',
                                              data_aug = vis.get_data_aug(horizontal_flip=True),
                                              train_test_names=['train', 'valid'], 
                                              target_size=(224,224), color_mode='rgb')

# load model
model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data, 
                             workers=8, use_multiprocessing=False, batch_size=64)

# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate

# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights') 

Example: Sequence Labeling for Named Entity Recognition using a randomly initialized Bidirectional LSTM CRF model

import ktrain
from ktrain import text as txt

# load data
(trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv',
                                            sentence_column='Sentence #',
                                            word_column='Word',
                                            tag_column='Tag', 
                                            data_format='gmb')

# load model
model = txt.sequence_tagger('bilstm-crf', preproc)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val)


# conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer)
learner.fit(1e-3, 1) 

Example: Node Classification on Cora Citation Graph using a GraphSAGE model

import ktrain
from ktrain import graph as gr

# load data with supervision ratio of 10%
(trn, val, preproc)  = gr.graph_nodes_from_csv(
                                               'cora.content', # node attributes/labels
                                               'cora.cites',   # edge list
                                               sample_size=20, 
                                               holdout_pct=None, 
                                               holdout_for_inductive=False,
                                              train_pct=0.1, sep='\t')

# load model
model=gr.graph_node_classifier('graphsage', trn)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64)


# find good learning rate
learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate
learner.lr_plot()               # visually identify best learning rate

# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights')

Additional examples can be found here.

Installation

pip3 install ktrain

This code was tested on Ubuntu 18.04 LTS using Keras 2.2.4 with a TensorFlow 1.14 backend.


Creator: Arun S. Maiya

Email: arun [at] maiya [dot] net

ktrain's People

Contributors

amaiya avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.