Giter VIP home page Giter VIP logo

convolutionalneuralnetwork-quick's Introduction

Create Convolutional Neural Networks in tensorflow with ease

With this library cnn_modeling.py you can create "n" layers of convolutional neural networks (CNN) very quickly. You just need to creat a dictionary for every layer with its hyperparameters and add them to a list. Afterwards use this list as input of the library to create a graph.

Features/Constraints:

  • All the activation functions are ReLU
  • Enable/Disable Batch normalization before ReLU activation for every layer.
  • Enable/Disable max pooling
  • Stack convolutional layers
  • Stack Fully connected layers
  • Save/restore the model to a given file name
  • Get the training/test scores.
  • Get the Weights and biases after training/testing
  • Mini-batch processing.
  • Enable/Disable dropout for the Fully connected layers. (Keep_ prob is set to one during the test time)
  • Adam optimizer used.
  • An additional function to transform a numpy array with shape m by n+1 to a mini-batch list of the desired size with balanced clases. But, Important constrain: for binary classification only. (This constrain is only for this last additional function).
  • Worked for grayscale images. If you want to test if with 3 colors or more channels images see the notes at the end of this page.
  • Create Deep Neural Networks without convolution layers by selecting a desired mode.
  • Update the learning rate based on the performance of the trained model in the dev-set: There is an option to automate the training-testing processes. After a desired amount of iterations, period T, the model is tested in the testing-batch. The amount of False Positives (fp) and False Negatives (fn) are acquired at this T0. At T1 the fp1 and tn1 are compared with fn0 and fp0. If fp1-fp0 > an allowed fp increase (AFpI) or fn1-fn0>fn (AFnI) the learning rate is decreased by a factor of 10. If a minimum learning rate is reached the learning process stops.
  • Automate the training-testing process, for n desired iterations and decrease the learning-rate as previously described.
  • For the automated training-testing set up receive an e-mail when the learning process ends. It supports gmail accounts so far.
    Miscellaneous:
  • Feed to the Fully connected layers a histogram of the input layer in parallel with the convolutional layers.
  • Reduce noise in a pre-processing step.
  • Visualize the image result of the convolutions or max-pooling

Future improvements:

  • Exponential weighted average for batch mean/std for the testing time.
  • Predictions for a single example or batch/mini-batch input.

Demo:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import pandas as pd
import cnn_modeling 
import imp
imp.reload(cnn_modeling)
<module 'cnn_modeling' from '/home/.../cnn_modeling.py'>
numpy_dir = "NumpyData/"
complete_train = numpy_dir+'images_complete_train_256x256_7494.npy'
complete_test = numpy_dir+'images_complete_test_256x256_4394.npy'
help(cnn_modeling)
Help on module cnn_modeling:

NAME
    cnn_modeling

FUNCTIONS
    balance_positive_negative(iNp, iBatchSize=256, v=False)
    
    create_conv(iDic, input_layer, iName, prev_dic, stddev_n=0.1, norm_offset=0, norm_scale=1, norm_epsilon=1e-06)
    
    create_graph(train_batch, layers, test_batch=None, width=256, height=256, batch_proc=True, test_batch_bool=False, restore_session=False, save_model=False, only_feed_forward=False, stddev_n=0.1, learning_rate=0.0001, iters=4, model_file='CNN_model')
    
    get_previous_features(i_layer)
    
    plot_list(iList, figsize=(10, 8), title='Loss/Eff', xlabel='Iters', ylabel='Loss/Eff')

FILE
    /home/.../cnn_modeling.py

Here we transform a nmpy array with the shape m x n+1. m rows as examples and n features +1 column for the class. We create balanced batches with the size iBatchsize=256, with 128 positive (1) and 128 negative (0).

train_numpy = np.load(complete_train)
train_batch = cnn_modeling.balance_positive_negative(iNp=train_numpy,iBatchSize=256)
print("Done",len(train_batch))
Done 19
test_numpy = np.load(complete_test)
test_batch = cnn_modeling.balance_positive_negative(iNp=test_numpy,iBatchSize=256)
print("Done",len(test_batch))
Done 15

For this demo we will take just 3 mini-batches from the train and test sets.

mini_train_batch = train_batch[:4]
mini_test_batch = test_batch[:4]
print(len(mini_train_batch),len(mini_test_batch))
4 4

Testing a feed forward without mini-batch

We make this test first to evaluate if the graph is created without errors

CV1 = { 'type':'CV', 'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
      'name':'CV2' } 

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]


stats_dic = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=False, 
            test_batch_bool=False, 
            only_feed_forward=True,
             restore_session = False, save_model = False, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=1,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Starting session
CV1 max (256, 128, 128, 8)
CV2 max (256, 64, 64, 8)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 dropout (256, 1024)
First batch test  Loss: 0.870873 Accuracy: 0.570312
Loss: 0.700965 Accuracy: 0.6875
Done

Testing a feed forward with mini-batch processing

As the previous test, we evaluate here if our batch processing is done correctly

CV1 = { 'type':'CV', 'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
      'name':'CV2' } 

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]


stats_dic = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=False, 
            only_feed_forward=True,
             restore_session = False, save_model = False, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=1,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Starting session
CV1 max (256, 128, 128, 8)
CV2 max (256, 64, 64, 8)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 dropout (256, 1024)
First batch test  Loss: 0.799795 Accuracy: 0.660156
Evaluating using train batch
batch: 0 Loss: 0.339041 Accuracy: 0.84375
batch: 1 Loss: 0.931047 Accuracy: 0.609375
batch: 2 Loss: 0.77167 Accuracy: 0.640625
batch: 3 Loss: 0.698236 Accuracy: 0.671875
Accuracy mean: 0.691406 max: 0.84375 min: 0.609375
Done

Start the training and saving the model for later training

For the first training we need to specify save_model=True but having restore_session=False. It is required to specify the file name where the model will be saved in by specifying the variable model_file. For this example we set up 2 iterations for the mini-batch training.

CV1 = { 'type':'CV', 'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
      'name':'CV2' } 

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]


stats_dic = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=False, 
            only_feed_forward=False,
             restore_session = False, save_model = True, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=2,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Starting session
CV1 max (256, 128, 128, 8)
CV2 max (256, 64, 64, 8)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 dropout (256, 1024)
First batch test  Loss: 2.66882 Accuracy: 0.5
iter: 0 batch: 0 Loss: 1.72455 Accuracy: 0.601562
iter: 0 batch: 1 Loss: 2.3825 Accuracy: 0.558594
iter: 0 batch: 2 Loss: 2.53418 Accuracy: 0.570312
iter: 0 batch: 3 Loss: 2.02975 Accuracy: 0.589844
Train batch mean 0.580078 min: 0.558594 max 0.601562
iter: 1 batch: 0 Loss: 1.21905 Accuracy: 0.710938
iter: 1 batch: 1 Loss: 1.80638 Accuracy: 0.625
iter: 1 batch: 2 Loss: 1.73706 Accuracy: 0.632812
iter: 1 batch: 3 Loss: 1.67835 Accuracy: 0.605469
Train batch mean 0.643555 min: 0.605469 max 0.710938
Train last iter mean 0.643555 min: 0.605469 max 0.710938
Saving model in: test_model
Done

The function returns the value for the cross entropy and train accuracy during the training

print(stats_dic.keys())
dict_keys(['train_acc', 'train_cross'])

To visualize the progress it is possible to use the function output and use cnn_modeling.plot_list to plot it.

cnn_modeling.plot_list(stats_dic['train_acc'], figsize=(8, 6), title='Train accuracy', xlabel='Iters', ylabel='Acc')
cnn_modeling.plot_list(stats_dic['train_cross'], figsize=(8, 6), title='Test Cross entropy', xlabel='Iters', ylabel='Loss')

png

png

Restore the model and continue training

The only difference with the previous step is to set restore_session=True

CV1 = { 'type':'CV', 'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
      'name':'CV2' } 

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]


stats_dic_restore = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=False, 
            only_feed_forward=False,
             restore_session = True, save_model = True, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=2,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Starting session
INFO:tensorflow:Restoring parameters from ./test_model
CV1 max (256, 128, 128, 8)
CV2 max (256, 64, 64, 8)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 dropout (256, 1024)
First batch test  Loss: 0.574261 Accuracy: 0.785156
iter: 0 batch: 0 Loss: 0.621952 Accuracy: 0.800781
iter: 0 batch: 1 Loss: 1.17566 Accuracy: 0.667969
iter: 0 batch: 2 Loss: 1.31136 Accuracy: 0.648438
iter: 0 batch: 3 Loss: 1.08492 Accuracy: 0.683594
Train batch mean 0.700195 min: 0.648438 max 0.800781
iter: 1 batch: 0 Loss: 0.449774 Accuracy: 0.824219
iter: 1 batch: 1 Loss: 0.981902 Accuracy: 0.726562
iter: 1 batch: 2 Loss: 0.920269 Accuracy: 0.757812
iter: 1 batch: 3 Loss: 0.740904 Accuracy: 0.75
Train batch mean 0.764648 min: 0.726562 max 0.824219
Train last iter mean 0.764648 min: 0.726562 max 0.824219
Saving model in: test_model
Done

Add the previous stats to the new one

print(len(stats_dic_restore['train_acc']))
stats_dic_restore['train_acc'].extend(stats_dic['train_acc'])
stats_dic_restore['train_cross'].extend(stats_dic['train_acc'])
print(len(stats_dic_restore['train_acc']))
8
16

Visualize the result

cnn_modeling.plot_list(stats_dic_restore['train_acc'], figsize=(8, 6), title='Train accuracy', xlabel='Iters', ylabel='Acc')
cnn_modeling.plot_list(stats_dic_restore['train_cross'], figsize=(8, 6), title='Test Cross entropy', xlabel='Iters', ylabel='Loss')

png

png

Restore the trained model and test it in the dev/test mini-batch set

Use the previous setting but change test_batch_bool=True, save_model=False and only_feed_forward=True

CV1 = { 'type':'CV', 'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':8, 'filter_w':11, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,1,1,1], 'padding':'SAME',
      'name':'CV2' } 

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]


stats_dic_restore = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=True, 
            only_feed_forward=True,
             restore_session = True, save_model = False, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=2,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Starting session
INFO:tensorflow:Restoring parameters from ./test_model
CV1 max (256, 128, 128, 8)
CV2 max (256, 64, 64, 8)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 dropout (256, 1024)
First batch test  Loss: 0.200401 Accuracy: 0.929688
Evaluating using test batch
batch: 0 Loss: 1.48273 Accuracy: 0.589844
batch: 1 Loss: 1.41957 Accuracy: 0.613281
batch: 2 Loss: 1.29926 Accuracy: 0.621094
batch: 3 Loss: 1.3216 Accuracy: 0.625
Accuracy mean: 0.612305 max: 0.625 min: 0.589844
Done

Try to improve the model: Add layers, modify hyperparameters

In this part we will modify some hyperparameters aiming to improve the dev/test performance.

Training:

CV1 = { 'type':'CV', 'depth':32, 'filter_w':11, 'filter_stride':[1,4,4,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':32, 'filter_w':5, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
      'name':'CV2' } 
CV3 ={'type':'CV',  'depth':128, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV3' } 
CV4 ={'type':'CV',  'depth':128, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV4' }
CV5 ={'type':'CV',  'depth':64, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV5' }

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2'} 
FC3 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC3',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV3,CV4,CV5,CV2FC,FC1,FC2,FC3]


stats_dic_improve = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=False, 
            only_feed_forward=False,
             restore_session = False, save_model = True, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=20,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV3
Creating layer: CV4
Creating layer: CV5
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Creating layer: FC3
Starting session
CV1 max (256, 32, 32, 32)
CV2 max (256, 16, 16, 32)
CV3 relu (256, 8, 8, 128)
CV4 relu (256, 4, 4, 128)
CV5 relu (256, 2, 2, 64)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 relu (256, 1024)
FC3 dropout (256, 1024)
First batch test  Loss: 1.18043 Accuracy: 0.414062
iter: 0 batch: 0 Loss: 0.941256 Accuracy: 0.636719
iter: 0 batch: 1 Loss: 1.38965 Accuracy: 0.546875
iter: 0 batch: 2 Loss: 1.28251 Accuracy: 0.542969
iter: 0 batch: 3 Loss: 1.33823 Accuracy: 0.617188
Train batch mean 0.585938 min: 0.542969 max 0.636719
iter: 1 batch: 0 Loss: 0.550499 Accuracy: 0.769531
iter: 1 batch: 1 Loss: 1.01165 Accuracy: 0.683594
iter: 1 batch: 2 Loss: 0.963572 Accuracy: 0.640625
iter: 1 batch: 3 Loss: 1.02371 Accuracy: 0.664062
Train batch mean 0.689453 min: 0.640625 max 0.769531


... [some iterations later] ...


Train batch mean 0.982422 min: 0.976562 max 0.992188
iter: 19 batch: 0 Loss: 0.0344171 Accuracy: 1.0
iter: 19 batch: 1 Loss: 0.0420092 Accuracy: 0.988281
iter: 19 batch: 2 Loss: 0.042245 Accuracy: 0.980469
iter: 19 batch: 3 Loss: 0.0493034 Accuracy: 0.992188
Train batch mean 0.990234 min: 0.980469 max 1.0
Train last iter mean 0.990234 min: 0.980469 max 1.0
Saving model in: test_model
Done

Testing:

CV1 = { 'type':'CV', 'depth':32, 'filter_w':11, 'filter_stride':[1,4,4,1], 'norm_bool':True,
    'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
       'name':'CV1'} 

CV2 ={'type':'CV',  'depth':32, 'filter_w':5, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,3,3,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
      'name':'CV2' } 
CV3 ={'type':'CV',  'depth':128, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV3' } 
CV4 ={'type':'CV',  'depth':128, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV4' }
CV5 ={'type':'CV',  'depth':64, 'filter_w':3, 'filter_stride':[1,2,2,1], 'norm_bool':True,
      'name':'CV5' }

CV2FC={'type':'CV2FC', 'neurons':1024, 'norm_bool':True, 'name':'CV2FC'} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1'} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2'} 
FC3 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC3',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV3,CV4,CV5,CV2FC,FC1,FC2,FC3]


stats_dic_test = cnn_modeling.create_graph(mini_train_batch,layers=layers,test_batch=mini_test_batch,
            width=256,height=256, 
             batch_proc=True, 
            test_batch_bool=True, 
            only_feed_forward=True,
             restore_session = True, save_model = False, 
             stddev_n = 0.1, learning_rate = 1e-4,iters=20,model_file='test_model')
Creating layer: CV1
Creating layer: CV2
Creating layer: CV3
Creating layer: CV4
Creating layer: CV5
Creating layer: CV2FC
Creating layer: FC1
Creating layer: FC2
Creating layer: FC3
Starting session
INFO:tensorflow:Restoring parameters from ./test_model
CV1 max (256, 32, 32, 32)
CV2 max (256, 16, 16, 32)
CV3 relu (256, 8, 8, 128)
CV4 relu (256, 4, 4, 128)
CV5 relu (256, 2, 2, 64)
CV2FC relu (256, 1024)
FC1 relu (256, 1024)
FC2 relu (256, 1024)
FC3 dropout (256, 1024)
First batch test  Loss: 0.0101463 Accuracy: 1.0
Evaluating using test batch
batch: 0 Loss: 0.905623 Accuracy: 0.664062
batch: 1 Loss: 1.15409 Accuracy: 0.644531
batch: 2 Loss: 0.834898 Accuracy: 0.699219
batch: 3 Loss: 0.885531 Accuracy: 0.65625
Accuracy mean: 0.666016 max: 0.699219 min: 0.644531
Done

We saw a 6% improvement from the previous test. From 2 to 5 convolutional layers and an increase in the filters/depth on them.

Visualization of the learning process

cnn_modeling.plot_list(stats_dic_improve['train_acc'], figsize=(8, 6), title='Train accuracy', xlabel='Iters', ylabel='Acc')
cnn_modeling.plot_list(stats_dic_improve['train_cross'], figsize=(8, 6), title='Train Cross entropy', xlabel='Iters', ylabel='Loss')

png

png

Through the creation of the model the dictionary with the hyperparameters gets modified. The weights and biases are stored in the keys 'W' and 'b' of every layer.

print(CV1.keys())
with tf.Session() as s:
    s.run(tf.global_variables_initializer())
    r = s.run(CV1['W'])
    print(r.shape)
    print(r)
    
dict_keys(['max_pool_stride', 'b', 'variance', 'max_pooling', 'depth', 'filter_w', 'output_label', 'type', 'padding', 'norm_bool', 'W', 'norm', 'max_pool_mask', 'filter_stride', 'mean', 'input_depth', 'max', 'conv', 'name', 'relu'])
(11, 11, 1, 32)
[[[[ 0.01258293  0.04532569  0.00288749 ..., -0.03397996 -0.05494995
     0.03610544]]

  [[ 0.12260102 -0.02733466  0.00377944 ...,  0.06139905 -0.10509678
    -0.06860053]]

    ... Some weights later ...


  [[-0.07153799  0.01371634  0.05449439 ..., -0.00618845 -0.11393668
    -0.118617  ]]

  [[-0.08060057  0.12104277  0.14032906 ..., -0.10620737 -0.13509519
    -0.12730974]]]]

Simpler training-testing

The option has two possibilities:

  • train: Uses the batch_train for training and will compute the learning_step process (E.g. Gradient descent). When the option first_run is set to True, no model is loaded. At the end of the iterations the model will be saved in the model_file variable. If first_run is set to False, the model_file model will be loaded for the next specified iterations.
  • test: Uses the batch_test for an only forward process. It will load the model_file specified.
d1,d2 = 32,32

CV1 ={'type':'CV',  'depth':d1, 'filter_w':3, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'name':'CV1' } 
CV2 ={'type':'CV',  'depth':d2, 'filter_w':3, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,2,2,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
      'name':'CV2' }

CV2FC={'type':'CV2FC', 'neurons':128, 'norm_bool':True, 'name':'CV2FC',
      'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC]

mode = 'train'
first_run = True
iters = 1
model_file = 'cnn_model_01'
batch_train = group1_batch
batch_test = group2_batch
iMode='CNN'

st = time()
stats_dic = cnn_modeling.create_graph_bools(batch_train,layers,batch_test,mode=mode,
            first_run=first_run, model_file=model_file,
            stddev_n = 0.1, learning_rate = 0.001,iters=iters,
            batch_proc=True, width=256,height=256,input_mode=iMode)
print("Minutes taken", np.ceil((time() - st)/60))

Create a Deep Neural Network without Convolutional layers

Change the input_mode from CNN to DNN

FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1',
      'drop_out_bool':True, 'keep_prob_train':1,
      'x2_bool':False,'x2_features':256} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 
layers = [FC1,FC2]

mode = 'train'
first_run = True
iters = 1
model_file = 'dnn_model_01'
batch_train = group1_batch
batch_test = group2_batch
iMode='DNN'

st = time()
stats_dic = cnn_modeling.create_graph_bools(batch_train,layers,batch_test,mode=mode,
            first_run=first_run, model_file=model_file,
            stddev_n = 0.1, learning_rate = 0.001,iters=iters,
            batch_proc=True, width=256,height=256,input_mode=iMode)
print("Minutes taken", np.ceil((time() - st)/60))

Automate traing-testing with decreasing learning-rate

Update the learning rate based on the performance of the trained model in the dev-set: There is an option to automate the training-testing processes. After a desired amount of iterations, period T, the model is tested in the testing-batch. The amount of False Positives (fp) and False Negatives (fn) are acquired at this T0. At T1 the fp1 and tn1 are compared with fn0 and fp0. If fp1-fp0 > an allowed fp increase (AFpI) or fn1-fn0>fn (AFnI) the learning rate is decreased by a factor of 10. If a minimum learning rate is reached the learning process stops.

Create a dictionary for the auto_test variable. Enable this mode by setting bool to true.

  • test_interval defines the period T to evaluate how well the model is performing on the dev/test set.
  • stop_max if set to True, the learning process will stop when the number of iterations reach the max_iters value or if the train_rate_stop is reached. If set to False it only will stop when train_rate_stop is reached.
  • fp_inc and fn_inc is the Allowed Increase for fp and fn respectively. If this values are overpassed, the learning rate will decrease by a factor of 10 and the last fp and fn taken in this update will be consired as the base for further evaluations.
  • train_rate_stop is the minimun value that the learning-rate could decrease.
  • send_email_bool if set to True the system will send an e-mail with the account emain_origin and passoword email_pass to email_destination.
d1,d2 = 32,32

CV1 ={'type':'CV',  'depth':d1, 'filter_w':3, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'name':'CV1' } 
CV2 ={'type':'CV',  'depth':d2, 'filter_w':3, 'filter_stride':[1,1,1,1], 'norm_bool':True,
      'max_pooling':True, 'max_pool_mask':[1,2,2,1], 'max_pool_stride':[1,2,2,1], 'padding':'SAME',
      'name':'CV2' }

CV2FC={'type':'CV2FC', 'neurons':128, 'norm_bool':True, 'name':'CV2FC',
      'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC]

mode = 'train'
first_run = True
iters = 1
model_file = 'cnn_model_01'
batch_train = group1_batch
batch_test = group2_batch
iMode='CNN'

auto_test={'bool':True,'test_interval':6,'stop_max':False,
           'max_iters':8,'fp_inc':2,'fn_inc':2,'train_rate_stop':0.00000001,
           'restore_session':False,
          'send_email_bool':True,'email_origin':'[email protected]',
           'email_pass':'your.email.password',
           'email_destination':'[email protected]'}

st = time()
stats_dic = cnn_modeling.create_graph_bools(batch_train,layers,batch_test,mode=mode,
            first_run=first_run, model_file=model_file,
            stddev_n = 0.1, learning_rate = 0.001,iters=iters,
            batch_proc=True, width=256,height=256,input_mode=iMode,
            auto_test=auto_test)
print("Minutes taken", np.ceil((time() - st)/60))

The email will have the structure:
Subject: Model evaluation completed: hostname of the server/computer Max-iter max_iter value
Content:
stats:
{'tn': 2147, 'specificity': 0.8439465375631031, 'fp': 397, 'fn': 545, 'sensitivity': 0.785770437162852, 'tp': 1999} | learning rate: 0.0001
{'tn': 2150, 'specificity': 0.8451257828414867, 'fp': 394, 'fn': 532, 'sensitivity': 0.790880500035847, 'tp': 2012} | learning rate: 0.0001
...
{'tn': 2166, 'specificity': 0.8514150909928652, 'fp': 378, 'fn': 492, 'sensitivity': 0.8066037704142933, 'tp': 2052} | learning rate: 1.0000000000000002e-08
...
{'tn': 2167, 'specificity': 0.8518081727523263, 'fp': 377, 'fn': 493, 'sensitivity': 0.8062106886548321, 'tp': 2051} | learning rate: 1.0000000000000002e-08
{'tn': 2167, 'specificity': 0.8518081727523263, 'fp': 377, 'fn': 494, 'sensitivity': 0.805817606895371, 'tp': 2050} | learning rate: 1.0000000000000003e-09

Enable the gmail security for low security applications before having the email send working

Before using the email send feature, test the following lines:

import smtplib
server = smtplib.SMTP('smtp.gmail.com:587')
server.starttls()
Next, log in to the server server.login("[email protected]", "your.password.")

Send a test email
msg = "Subject:test \n\n Hello! \n test context\n" # The \n\n separates the message from the headers
server.sendmail("[email protected]", "[email protected]", msg)

You are expected to see an error message after its excecution. Check your gmail inbox and you will get a security warning. Read the description, click on enable access for less secure applications and follow the instructions. Once done, try the previous lines again and if you don't get any error, your account is ready to be used. (I don't use my main email account for this).

Miscellaneuos features:

Feed a histogram of the input layer (image) in parallel with the convolutional layers

png

You can feed a histogram of the input layer to a Fully Connected Layer by setting the option x2_bool to True and defining the number of bins for the histogram. x2_features=256 will feed a histogram of 256 bins

CV2FC={'type':'CV2FC', 'neurons':128, 'norm_bool':True, 'name':'CV2FC',
      'drop_out_bool':True, 'keep_prob_train':0.5} 
FC1 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC1',
      'drop_out_bool':True, 'keep_prob_train':1,
      'x2_bool':False,'x2_features':256} 
FC2 = { 'type':'FC', 'neurons':1024, 'norm_bool':True, 'name':'FC2',
       'drop_out_bool':True, 'keep_prob_train':0.5} 

layers = [CV1,CV2,CV2FC,FC1,FC2]

Pre-processing: Explicity convolution for border detection

I have Included a previous step prior to the convolutional layers. A manual convolution of the images against 4 filters. After the convolutions with these filters the result is added and normalized to remark every possible border in these directions

F1 = tf.constant([[1.0,0,-1.0],[1.0,0,-1.0],[1.0,0,-1.0]])
F2 = tf.transpose(F1)
F3 = tf.constant([[1.0,0,1.0],[0,0,0],[-1.0,0,-1.0]])
F4 = tf.transpose(F3)

CVM = CV1+CV2+CV3+CV4
CVMn = 255.0*CVM/(tf.reduce_max(CVM)-tf.reduce_min(CVM))

Then, this result goes against an upper-pass filter to transform upper values of a threshold to 255 and those below to zero. The functions is described in: https://github.com/bsaldivaremc2/image_classification_synthetic_rotated_sample_creator

To activate this feature add to the cnn_modeling.create_graph_bools function the variables:

  • reduce_noise: To True
  • rn_shift: is the threshold value between 0 and 1. a value of 0.5 means that values above 127 will be set to 255 and below to 0.
  • rn_magnitude: from 0 to 1, is the factor that will transform the value of each pixel, if set closer to 1 a transformation towards 255 for values over the threshold will be set. Lower values will provide lighter transformations.
cnn_modeling.create_graph_bools(...,reduce_noise=False,rn_shift=0.03,rn_magnitude=0.8,...)  

Visualize the result of a given Convolution Layer against an input mini-batch set of images

If you want to see how it looks like the image after the convolution of a given layer, including the max-pooling layer set the option get_deconv=True . Also specify which layer you want to see in the variable deconv_layer='CV4'. Since every layer has a norm, relu, conv, max operations, you need to specify which of these you want to be returned. To see the convolution layers result set deconv_val = 'conv' or to see the max pooling if enabled deconv_val = 'max'.
Use this in a test mode.
The function will return a key stats_dic['deconv'] which holds the result.

stats_dic = cnn_modeling.create_graph_bools(batch_train,layers,batch_test,mode=test,...
            get_deconv=False,deconv_layer='CV4',deconv_val = 'max')  

r = stats_dic['deconv']
image_to_see = 20 #Number of image in the mini-batch

print(r.shape)
for filterx in range(0,2): #See the first two filters
    deconv = r[image_to_see,:,:,filterx]
    deconv_t = np.reshape(deconv,(r.shape[1],r.shape[2]))
    plt.imshow(deconv_t,cmap="gray")
    plt.show()
            

Important indications:

  • As may have seen there is a structure Convolutional Layer (CV), CV2FC and Fully Connected (FC). For the moment it is required to have this structure and have a translation layer from the CV layers to the FC. This CV2FC is a FC layer with a reshape step in the first part.
  • You can enable max pooling by setting max_pooling=True, but you need to specify the hyperparameters shown. For the moment there is no default values
  • Every layer requires a unique name. During the saving and restoring of the model I saw some issues when variables lack a name.
  • The create_graph function requires that the train and test batches be a list of "bn" mini-batches where the mini-batch[0] is for x and [1] for y. x should be of shape mini-batch size by n features and y mini-batch size by nc classes
  • The layers were tested with grayscale images. if the input batches have 3 channels (r,g,b) or others add to the first CV dictionary the key 'prev_channels':3 and see what happens. By default it is set to 1 . I haven't tested for more channels so if you do it and works let me know.

convolutionalneuralnetwork-quick's People

Contributors

bsaldivaremc2 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.