Giter VIP home page Giter VIP logo

ndim's Introduction

ndim

Multidimensional volumes and monomial integrals.

PyPi Version PyPI pyversions GitHub stars Downloads

Discord

ndim computes all kinds of volumes and integrals of monomials over such volumes in a fast, numerically stable way, using recurrence relations.

Install with

pip install ndim

and use like

import ndim

val = ndim.nball.volume(17)
print(val)

val = ndim.nball.integrate_monomial((4, 10, 6, 0, 2), lmbda=-0.5)
print(val)

# or nsphere, enr, enr2, ncube, nsimplex
0.14098110691713894
1.0339122278806983e-07

All functions have the symbolic argument; if set to True, computations are performed symbolically.

import ndim

vol = ndim.nball.volume(17, symbolic=True)
print(vol)
512*pi**8/34459425

The formulas

xdoc

A PDF version of the text can be found here.

This note gives closed formulas and recurrence expressions for many $n$-dimensional volumes and monomial integrals. The recurrence expressions are often much simpler, more instructive, and better suited for numerical computation.

n-dimensional unit cube

$$C_n = \left\{(x_1,\dots,x_n): -1 \le x_i \le 1\right\}$$
  • Volume.
$$|C_n| = 2^n = \begin{cases} 1&\text{if $n=0$}\\\ |C_{n-1}| \times 2&\text{otherwise} \end{cases}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{C_n} x_1^{k_1}\cdots x_n^{k_n}\\\ &= \prod_{i=1}^n \frac{1 + (-1)^{k_i}}{k_i+1} =\begin{cases} 0&\text{if any $k_i$ is odd}\\\ |C_n|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0}-1}{k_{i_0}+1}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

n-dimensional unit simplex

$$T_n = \left\{(x_1,\dots,x_n):x_i \geq 0, \sum_{i=1}^n x_i \leq 1\right\}$$
  • Volume.
$$|T_n| = \frac{1}{n!} = \begin{cases} 1&\text{if $n=0$}\\\ |T_{n-1}| \times \frac{1}{n}&\text{otherwise} \end{cases}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{T_n} x_1^{k_1}\cdots x_n^{k_n}\\\ &= \frac{\prod_{i=1}^n\Gamma(k_i + 1)}{\Gamma\left(n + 1 + \sum_{i=1}^n k_i\right)}\\\ &=\begin{cases} |T_n|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-1,\dots,k_n} \times \frac{k_{i_0}}{n + \sum_{i=1}^n k_i}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

Remark

Note that both numerator and denominator in the closed expression will assume very large values even for polynomials of moderate degree. This can lead to difficulties when evaluating the expression on a computer; the registers will overflow. A common countermeasure is to use the log-gamma function,

$$\frac{\prod_{i=1}^n\Gamma(k_i)}{\Gamma\left(\sum_{i=1}^n k_i\right)} = \exp\left(\sum_{i=1}^n\ln\Gamma(k_i) - \ln\Gamma\left(\sum_{i=1}^n k_i\right)\right),$$

but a simpler and arguably more elegant solution is to use the recurrence. This holds true for all such expressions in this note.

n-dimensional unit sphere

$$U_n = \left\{(x_1,\dots,x_n): \sum_{i=1}^n x_i^2 = 1\right\}$$
  • Volume.
$$|U_n| = \frac{n \sqrt{\pi}^n}{\Gamma(\frac{n}{2}+1)} = \begin{cases} 2&\text{if $n = 1$}\\\ 2\pi&\text{if $n = 2$}\\\ |U_{n-2}| \times \frac{2\pi}{n - 2}&\text{otherwise} \end{cases}$$
  • Monomial integral.
$$\begin{align*} I_{k_1,\dots,k_n} &= \int_{U_n} x_1^{k_1}\cdots x_n^{k_n}\\\ &= \frac{2\prod_{i=1}^n \Gamma\left(\frac{k_i+1}{2}\right)}{\Gamma\left(\sum_{i=1}^n\frac{k_i+1}{2}\right)}\\\\\ &=\begin{cases} 0&\text{if any $k_i$ is odd}\\\ |U_n|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0} - 1}{n - 2 + \sum_{i=1}^n k_i}&\text{if $k_{i_0} > 0$} \end{cases} \end{align*}$$

n-dimensional unit ball

$$S_n = \left\{(x_1,\dots,x_n): \sum_{i=1}^n x_i^2 \le 1\right\}$$
  • Volume.

    |S_n|
    = \frac{\sqrt{\pi}^n}{\Gamma(\frac{n}{2}+1)}
    = \begin{cases}
       1&\text{if $n = 0$}\\
       2&\text{if $n = 1$}\\
       |S_{n-2}| \times \frac{2\pi}{n}&\text{otherwise}
    \end{cases}
    
  • Monomial integral.

$$\begin{align} I_{k_1,\dots,k_n} &= \int_{S_n} x_1^{k_1}\cdots x_n^{k_n}\\\ &= \frac{2^{n + p}}{n + p} |S_n| =\begin{cases} 0&\text{if any $k_i$ is odd}\\\ |S_n|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0} - 1}{n + p}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

with $p=\sum_{i=1}^n k_i$.

n-dimensional unit ball with Gegenbauer weight

$\lambda > -1$.

  • Volume.
$$\begin{align} |G_n^{\lambda}| &= \int_{S^n} \left(1 - \sum_{i=1}^n x_i^2\right)^\lambda\\\ &= \frac{% \Gamma(1+\lambda)\sqrt{\pi}^n }{% \Gamma\left(1+\lambda + \frac{n}{2}\right) } = \begin{cases} 1&\text{for $n=0$}\\\ B\left(\lambda + 1, \frac{1}{2}\right)&\text{for $n=1$}\\\ |G_{n-2}^{\lambda}|\times \frac{2\pi}{2\lambda + n}&\text{otherwise} \end{cases} \end{align}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{S^n} x_1^{k_1}\cdots x_n^{k_n} \left(1 - \sum_{i=1}^n x_i^2\right)^\lambda\\\ &= \frac{% \Gamma(1+\lambda)\prod_{i=1}^n \Gamma\left(\frac{k_i+1}{2}\right) }{% \Gamma\left(1+\lambda + \sum_{i=1}^n \frac{k_i+1}{2}\right) }\\\ &= \begin{cases} 0&\text{if any $k_i$ is odd}\\\ |G_n^{\lambda}|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0}-1}{2\lambda + n + \sum_{i=1}^n k_i}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

n-dimensional unit ball with Chebyshev-1 weight

Gegenbauer with $\lambda=-\frac{1}{2}$.

  • Volume.
$$\begin{align} |G_n^{-1/2}| &= \int_{S^n} \frac{1}{\sqrt{1 - \sum_{i=1}^n x_i^2}}\\\ &= \frac{% \sqrt{\pi}^{n+1} }{% \Gamma\left(\frac{n+1}{2}\right) } =\begin{cases} 1&\text{if $n=0$}\\\ \pi&\text{if $n=1$}\\\ |G_{n-2}^{-1/2}| \times \frac{2\pi}{n-1}&\text{otherwise} \end{cases} \end{align}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{S^n} \frac{x_1^{k_1}\cdots x_n^{k_n}}{\sqrt{1 - \sum_{i=1}^n x_i^2}}\\\ &= \frac{% \sqrt{\pi} \prod_{i=1}^n \Gamma\left(\frac{k_i+1}{2}\right) }{% \Gamma\left(\frac{1}{2} + \sum_{i=1}^n \frac{k_i+1}{2}\right) }\\\ &= \begin{cases} 0&\text{if any $k_i$ is odd}\\\ |G_n^{-1/2}|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0}-1}{n-1 + \sum_{i=1}^n k_i}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

n-dimensional unit ball with Chebyshev-2 weight

Gegenbauer with $\lambda = +\frac{1}{2}$.

  • Volume.
$$\begin{align} |G_n^{+1/2}| &= \int_{S^n} \sqrt{1 - \sum_{i=1}^n x_i^2}\\\ &= \frac{% \sqrt{\pi}^{n+1} }{% 2\Gamma\left(\frac{n+3}{2}\right) } = \begin{cases} 1&\text{if $n=0$}\\\ \frac{\pi}{2}&\text{if $n=1$}\\\ |G_{n-2}^{+1/2}| \times \frac{2\pi}{n+1}&\text{otherwise} \end{cases} \end{align}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{S^n} x_1^{k_1}\cdots x_n^{k_n} \sqrt{1 - \sum_{i=1}^n x_i^2}\\\ &= \frac{% \sqrt{\pi}\prod_{i=1}^n \Gamma\left(\frac{k_i+1}{2}\right) }{% 2\Gamma\left(\frac{3}{2} + \sum_{i=1}^n \frac{k_i+1}{2}\right) }\\\ &= \begin{cases} 0&\text{if any $k_i$ is odd}\\\ |G_n^{+1/2}|&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0}-1}{n + 1 + \sum_{i=1}^n k_i}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

n-dimensional generalized Laguerre volume

$\alpha > -1$.

  • Volume
$$\begin{align} V_n &= \int_{\mathbb{R}^n} \left(\sqrt{x_1^2+\cdots+x_n^2}\right)^\alpha \exp\left(-\sqrt{x_1^2+\dots+x_n^2}\right)\\\ &= \frac{2 \sqrt{\pi}^n \Gamma(n+\alpha)}{\Gamma(\frac{n}{2})} = \begin{cases} 2\Gamma(1+\alpha)&\text{if $n=1$}\\\ 2\pi\Gamma(2 + \alpha)&\text{if $n=2$}\\\ V_{n-2} \times \frac{2\pi(n+\alpha-1) (n+\alpha-2)}{n-2}&\text{otherwise} \end{cases} \end{align}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{\mathbb{R}^n} x_1^{k_1}\cdots x_n^{k_n} \left(\sqrt{x_1^2+\dots+x_n^2}\right)^\alpha \exp\left(-\sqrt{x_1^2+\dots+x_n^2}\right)\\\ &= \frac{% 2 \Gamma\left(\alpha + n + \sum_{i=1}^n k_i\right) \left(\prod_{i=1}^n\Gamma\left(\frac{k_i + 1}{2}\right)\right) }{% \Gamma\left(\sum_{i=1}^n\frac{k_i + 1}{2}\right) }\\\ &=\begin{cases} 0&\text{if any $k_i$ is odd}\\\ V_n&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\ldots,k_n} \times \frac{% (\alpha + n + p - 1) (\alpha + n + p - 2) (k_{i_0} - 1) }{% n + p - 2 }&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

with $p=\sum_{k=1}^n k_i$.

n-dimensional Hermite (physicists')

  • Volume.
$$\begin{align} V_n &= \int_{\mathbb{R}^n} \exp\left(-(x_1^2+\cdots+x_n^2)\right)\\\ &= \sqrt{\pi}^n = \begin{cases} 1&\text{if $n=0$}\\\ \sqrt{\pi}&\text{if $n=1$}\\\ V_{n-2} \times \pi&\text{otherwise} \end{cases} \end{align}$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \int_{\mathbb{R}^n} x_1^{k_1}\cdots x_n^{k_n} \exp(-(x_1^2+\cdots+x_n^2))\\\ &= \prod_{i=1}^n \frac{(-1)^{k_i} + 1}{2} \times \Gamma\left(\frac{k_i+1}{2}\right)\\\ &=\begin{cases} 0&\text{if any $k_i$ is odd}\\\ V_n&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times \frac{k_{i_0} - 1}{2}&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

n-dimensional Hermite (probabilists')

  • Volume.
$$V_n = \frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n} \exp\left(-\frac{1}{2}(x_1^2+\cdots+x_n^2)\right) = 1$$
  • Monomial integration.
$$\begin{align} I_{k_1,\dots,k_n} &= \frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n} x_1^{k_1}\cdots x_n^{k_n} \exp\left(-\frac{1}{2}(x_1^2+\cdots+x_n^2)\right)\\\ &= \prod_{i=1}^n \frac{(-1)^{k_i} + 1}{2} \times \frac{2^{\frac{k_i+1}{2}}}{\sqrt{2\pi}} \Gamma\left(\frac{k_i+1}{2}\right)\\\ &=\begin{cases} 0&\text{if any $k_i$ is odd}\\\ V_n&\text{if all $k_i=0$}\\\ I_{k_1,\dots,k_{i_0}-2,\dots,k_n} \times (k_{i_0} - 1)&\text{if $k_{i_0} > 0$} \end{cases} \end{align}$$

ndim's People

Contributors

nschloe avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.