Giter VIP home page Giter VIP logo

adiporeg_chip's Introduction

adiporeg_chip

Collect, process and quality control Chromatin Immunoprecipitation followed by sequencing (ChIP-Seq) data from differentiating 3T3-L1. Related repositories to collect and process other kinds of data are adiporeg_rna and adiporeg_dhs. The processed data are further analyzed in repositories such as adiporeg

This repository aims to detail the following:

  1. The search strategy
  2. The collected data
  3. The pre-processing and the processing of the raw data

1. The search strategy

The term "3T3-L1" was used to search the NCBI SRA repository. The results were sent to the run selector. 1,176 runs were viewed. The runs were faceted by Assay Type and the "chip-seq" which resulted in 739 runs. Only 235 samples from 20 different studies were included after being manually reviewed to fit the following criteria:

  • The raw data is available from GEO and has a GEO identifier (GSM#)
  • The raw data is linked to a published publicly available article
  • The protocols for generating the data sufficiently describe the origin of the cell line, the differentiation medium and the time points when the samples were collected.
  • In case the experimenal designs included treatment other than the differentiation medias, the control (non-treated) samples were included.

Note: The data quality and the platform discrepencies are not inluded in these criteria

2. The collected data

2.1 Sample table

Stage Time (hours) Samples Factors
Early -48 7 CTCF/H3K27ac/H3K27me3/H3K36me3/H3K4me1/H3K4me2/H3K4me3
0 56 POLR2A/PPARG/RXRG/CTCF/H3K27ac/H3K27me3/H3K36me3/H3K4me1/H3K4me2/H3K4me3/None/CEBPB/H3K9ac/CEBPD/KDM1A/NRF1/GPS2/H3K9me3/SETDB1/MBD1/KDM5A/SMC1A/EP300/NCOR1/MED1/HDAC3/HDAC2
2 1 CEBPB
4 43 POLR2A/RXRG/STAT5A/NR3C1/CEBPD/CEBPB/ATF2/ATF7/JUN/FOSL2/KLF4/KLF5/PBX1/STAT1/VDR/RXR/MED1/EP300/BRG1/H3K27ac/H3K4me1/H3K4me2/KDM5A/H3K4me3/SMC1A/NCOR1/HDAC3/HDAC2/CTCF
6 3 None/NR3C1/CEBPB
24 6 POLR2A/PPARG/RXRG/None/H3K9ac/TCF7
48 24 POLR2A/PPARG/RXRG/CTCF/H3K27ac/H3K27me3/H3K36me3/H3K4me1/H3K4me2/H3K4me3/CEBPB/KDM5A/KDM5C/SMC1A/MED1
72 3 POLR2A/PPARG/RXRG
NA 25 PSMB1/CREB1/JUN/PPARG/None/Ubiquitin/H3K9me2/H3K27me3/H3K4me3/H3K27ac/H3K36me3/H3K4me1/H3K79me2/H3K79me3/H4K20me1/CEBPB
Late 96 9 POLR2A/PPARG/RXRG/SMC1A/MED1/CTCF
144 7 POLR2A/PPARG/RXRG/H3K9me3/SETDB1
168 29 CTCF/H3K27ac/H3K27me3/H3K36me3/H3K4me1/H3K4me2/H3K4me3/PPARG/None/H3K9me3/MED1/CEBPA/POLR2A/CREB1/KDM1A/KMT2B/SMC1A
192 1 H3K4me3
240 2 None/H3K9ac
NA 20 E2F4/CEBPA/EP300/None/H3K9ac/PPARG/MED1/CREB1/NCOR1/CEBPB/ATF2/JUND/FOSL2

2.2 Run table

Study Samples Runs
GSE13511 GSM340794 3
GSM340795 3
GSM340796 4
GSM340797 3
GSM340798 3
GSM340799 3
GSM340800 2
GSM340801 2
GSM340802 3
GSM340803 2
GSM340804 3
GSM340805 2
GSM340806 2
GSM340807 2
GSM340808 2
GSM340809 2
GSM340810 2
GSM340811 2
GSE17067 GSM427092 1
GSM427094 1
GSM427095 1
GSM427097 1
GSE21314 GSM532740 1
GSM532744 1
GSE21365 GSM535740 9
GSM535741 3
GSM535742 2
GSM535743 2
GSM535744 2
GSM535745 4
GSM535746 2
GSM535747 2
GSM535748 4
GSM535749 2
GSM535750 2
GSM535751 2
GSM535752 2
GSM535753 4
GSM535754 2
GSM535755 3
GSM535756 3
GSM535757 3
GSM535758 2
GSM535759 4
GSM535760 2
GSM535761 2
GSM535762 4
GSM535763 3
GSM535764 3
GSM535765 3
GSM535766 2
GSM535767 4
GSM535768 2
GSM535769 2
GSM535770 2
GSE21898 GSM544717 1
GSM544718 1
GSM544719 1
GSM544720 1
GSM544721 1
GSM544722 1
GSM544723 1
GSM544724 1
GSM544725 1
GSM544726 1
GSE27826 GSM686970 1
GSM686971 1
GSM686972 1
GSM686973 1
GSM686974 1
GSM686975 1
GSM686976 1
GSM686977 1
GSM686978 1
GSM686979 1
GSM686980 1
GSM686981 1
GSM686982 1
GSM686983 1
GSE31867 GSM790410 1
GSE33821 GSM1095377 1
GSM1095378 1
GSM1095379 1
GSM1095381 1
GSM838021 1
GSM838022 1
GSE41455 GSM1017630 18
GSM1017631 14
GSM1017632 48
GSM1017633 56
GSM1017634 16
GSM1017635 44
GSM1017636 48
GSE49423 GSM1199128 4
GSM1199130 2
GSM1199132 1
GSM1199134 2
GSM1199136 1
GSM1199138 1
GSM1199140 1
GSM1199142 1
GSE50934 GSM1232698 1
GSM1232699 1
GSM1232700 1
GSM1232701 1
GSM1232706 1
GSM1232707 1
GSE56745 GSM1368000 1
GSM1368002 2
GSM1368003 2
GSM1368005 1
GSM1368007 1
GSM1368009 1
GSM1368011 1
GSM1368012 1
GSM1368013 1
GSM1368014 1
GSM1368015 1
GSE56872 GSM1370447 1
GSM1370448 1
GSM1370449 1
GSM1370450 1
GSM1370452 1
GSM1370453 1
GSM1370454 1
GSM1370455 1
GSM1370456 1
GSM1370457 1
GSM1370466 1
GSM1370467 1
GSM1370468 1
GSM1370469 1
GSM1370470 1
GSM1370471 1
GSM1370472 1
GSM1370473 1
GSM1370474 1
GSE57777 GSM1388416 1
GSM1388417 1
GSE58491 GSM1412512 1
GSM1412513 1
GSM1412514 1
GSM1412515 1
GSM1412516 1
GSM1412517 1
GSM1412518 1
GSM1412519 1
GSM1412520 1
GSE73432 GSM1893623 1
GSM1893624 1
GSM1893625 2
GSM1893626 1
GSM1893628 2
GSM1893629 1
GSM1893630 2
GSM1893631 1
GSM1893632 1
GSM1893633 1
GSM1893634 2
GSM1893636 2
GSM1893637 1
GSM1893649 1
GSE74189 GSM2522176 1
GSM2522177 1
GSE84410 GSM2233356 1
GSM2233357 1
GSM2233358 1
GSM2233359 1
GSM2233360 1
GSM2233361 1
GSM2233368 1
GSM2233369 1
GSM2233370 1
GSM2233371 1
GSM2233373 1
GSM2391498 1
GSM2391499 1
GSM2391500 1
GSM2391501 1
GSE85100 GSM2257695 2
GSM2257696 2
GSM2257705 2
GSM2257706 2
GSE95533 GSM2515924 1
GSM2515925 1
GSM2515926 1
GSM2515927 1
GSM2515928 1
GSM2515929 1
GSM2515930 1
GSM2515931 1
GSM2515932 1
GSM2515933 1
GSM2515936 1
GSM2515937 1
GSM2515940 1
GSM2515941 1
GSM2515944 1
GSM2515945 1
GSM2515946 1
GSM2515947 1
GSM2515948 1
GSM2515949 1
GSM2515950 1
GSM2515951 1
GSM2515952 1
GSM2515953 1
GSM2515954 1
GSM2515955 1
GSM2515956 1
GSM2515957 1
GSM2515958 1
GSM2515959 1
GSM2515960 1
GSM2515961 1
GSM2515962 1
GSM2515963 1
GSM2515964 1
GSM2515965 1
GSM2515966 1
GSM2515967 1
GSM2515968 1
GSM2515969 1
GSM2515970 1
GSM2515971 1
GSM2515972 1
GSM2515973 1
GSM2515974 1
GSM2515975 1
GSM2515976 1
GSM2515977 1
GSM2515978 1
GSM2515979 1
GSM2515980 1
GSM2515981 1
Library Type Runs
PAIRED 8
SINGLE 564
Sequencer Models Runs
Illumina Genome Analyzer 148
Illumina Genome Analyzer II 18
Illumina Genome Analyzer IIx 45
Illumina HiSeq 1500 73
Illumina HiSeq 2000 278
Illumina HiSeq 2500 2
NextSeq 500 8

2.3 Studies

[1] A. S. B. Brier, A. Loft, J. G. Madsen, et al. “The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation”. In: Nucleic Acids Research 45.4 (2017), pp. 1743-1759. ISSN: 13624962. DOI: 10.1093/nar/gkw1156. eprint: 1611.06654.

[2] M. D. Cardamone, B. Tanasa, M. Chan, et al. “GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARG”. In: Cell Reports 8.1 (2014), pp. 163-176. ISSN: 22111247. DOI: 10.1016/j.celrep.2014.05.041. eprint: NIHMS150003.

[3] A. Catic, C. Y. Suh, C. T. Hill, et al. “Genome-wide Map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation”. In: Cell 155.6 (2013), pp. 1380-1395. ISSN: 00928674. DOI: 10.1016/j.cell.2013.11.016. eprint: NIHMS150003.

[4] A. G. Cristancho, M. Schupp, M. I. Lefterova, et al. “Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells”. In: Proceedings of the National Academy of Sciences 108.39 (2011), pp. 16271-16276. ISSN: 0027-8424. DOI: 10.1073/pnas.1109409108. <URL: http://www.pnas.org/cgi/doi/10.1073/pnas.1109409108>.

[5] D. Duteil, E. Metzger, D. Willmann, et al. “LSD1 promotes oxidative metabolism of white adipose tissue”. In: Nature Communications 5.May (Jun. 2014), p. 4093. ISSN: 20411723. DOI: 10.1038/ncomms5093. <URL: http://www.nature.com/doifinder/10.1038/ncomms5093>.

[6] A. K. Haakonsson, M. Stahl Madsen, R. Nielsen, et al. “Acute Genome-Wide Effects of Rosiglitazone on PPARG Transcriptional Networks in Adipocytes”. In: Molecular Endocrinology 27.9 (2013), pp. 1536-1549. ISSN: 0888-8809. DOI: 10.1210/me.2013-1080. <URL: https://academic.oup.com/mend/article-lookup/doi/10.1210/me.2013-1080>.

[7] S. Kang, L. T. Tsai, Y. Zhou, et al. “Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis”. In: Nature Cell Biology 17.1 (2015), pp. 44-56. ISSN: 14764679. DOI: 10.1038/ncb3080. eprint: NIHMS150003.

[8] B. Lai, J. E. Lee, Y. Jang, et al. “MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis”. In: Nucleic Acids Research 45.11 (2017), pp. 6388-6403. ISSN: 13624962. DOI: 10.1093/nar/gkx234.

[9] M. I. Lefterova, D. J. Steger, D. Zhuo, et al. “Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor Function in Adipocytes and Macrophages”. In: Molecular and Cellular Biology 30.9 (2010), pp. 2078-2089. ISSN: 0270-7306. DOI: 10.1128/MCB.01651-09. <URL: http://mcb.asm.org/cgi/doi/10.1128/MCB.01651-09>.

[10] X. Luo, K. W. Ryu, D. S. Kim, et al. “PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPB and Modulating Its Transcriptional Activity”. In: Molecular Cell 65.2 (Jan. 2017), pp. 260-271. ISSN: 10974164. DOI: 10.1016/j.molcel.2016.11.015. <URL: http://www.ncbi.nlm.nih.gov/pubmed/28107648 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5258183>.

[11] K. D. Macisaac, K. A. Lo, W. Gordon, et al. “A quantitative model of transcriptional regulation reveals the influence of binding location on expression”. In: PLoS Computational Biology 6.4 (Apr. 2010), p. e1000773. ISSN: 1553734X. DOI: 10.1371/journal.pcbi.1000773. <URL: http://www.ncbi.nlm.nih.gov/pubmed/20442865 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2861697>.

[12] Y. Matsumura, R. Nakaki, T. Inagaki, et al. “H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation”. In: Molecular Cell 60.4 (2015), pp. 584-596. ISSN: 10974164. DOI: 10.1016/j.molcel.2015.10.025.

[13] T. S. Mikkelsen, Z. Xu, X. Zhang, et al. “Comparative epigenomic analysis of murine and human adipogenesis”. In: Cell 143.1 (Oct. 2010), pp. 156-169. ISSN: 00928674. DOI: 10.1016/j.cell.2010.09.006. <URL: http://www.ncbi.nlm.nih.gov/pubmed/20887899 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2950833>.

[14] R. Nielsen, T. . Pedersen, D. Hagenbeek, et al. “Genome-wide profiling of PPARG:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis”. In: Genes and Development 22.21 (2008), pp. 2953-2967. ISSN: 08909369. DOI: 10.1101/gad.501108.

[15] R. Siersbæk, J. G. S. Madsen, B. M. Javierre, et al. “Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation”. In: Molecular Cell 66.3 (2017), pp. 420-435.e5. ISSN: 10974164. DOI: 10.1016/j.molcel.2017.04.010.

[16] R. Siersbaek, R. Nielsen, S. John, et al. “Extensive chromatin remodelling and establishment of transcription factor hotspots during early adipogenesis”. In: EMBO Journal 30.8 (Apr. 2011), pp. 1459-1472. ISSN: 02614189. DOI: 10.1038/emboj.2011.65. <URL: http://www.ncbi.nlm.nih.gov/pubmed/21427703 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3102274>.

[17] R. Siersbæk, A. Rabiee, R. Nielsen, et al. “Transcription factor cooperativity in early adipogenic hotspots and super-enhancers”. In: Cell Reports 7.5 (Jun. 2014), pp. 1443-1455. ISSN: 22111247. DOI: 10.1016/j.celrep.2014.04.042. <URL: http://www.ncbi.nlm.nih.gov/pubmed/24857652>.

[18] D. J. Steger, G. R. Grant, M. Schupp, et al. “Propagation of adipogenic signals through an epigenomic transition state”. In: Genes and Development 24.10 (May. 2010), pp. 1035-1044. ISSN: 08909369. DOI: 10.1101/gad.1907110. <URL: http://www.ncbi.nlm.nih.gov/pubmed/20478996 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2867208>.

[19] S. E. Step, H. W. Lim, J. M. Marinis, et al. “Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARG-driven enhancers”. In: Genes and Development 28.9 (May. 2014), pp. 1018-1028. ISSN: 15495477. DOI: 10.1101/gad.237628.114. <URL: http://www.ncbi.nlm.nih.gov/pubmed/24788520 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4018489>.

[20] L. Wang, S. Xu, J. E. Lee, et al. “Histone H3K9 methyltransferase G9a represses PPARG expression and adipogenesis”. In: EMBO Journal 32.1 (2013), pp. 45-59. ISSN: 02614189. DOI: 10.1038/emboj.2012.306.

3. The pre-processing and the processing of the raw data

The scripts to download and process the raw data are located in scripts/ and are glued together to run sequentially by the GNU make file Makefile. The following is basically a description of the recipies in the Makefile with emphasis on the software versions, options, inputs and outputs.

3.1 download_fastq

  • Program: wget (1.18)
  • Input: run.csv, the URLs column
  • Output: *.fastq.gz
  • Options: -N

3.2 get_annotation

  • Program: wget (1.18)
  • Input: URL for mm10 gene annotation file
  • Output: annotation.gtf
  • Options: -N

3.3 make_index

  • Program: bowtie2-build (2.3.0)
  • Input: URL for mm10 mouse genome fasta files
  • Output: *.bt2 bowtie2 index for the mouse genome
  • Options: defaults

3.4 align_reads

  • Program: bowtie2 (2.3.0)
  • Input: *.fastq.gz and mm10/ bowtie2 index for the mouse genome
  • Output: *.sam
  • Options: --no-unal

3.5 sam_to_bam

  • Program: samtools view (1.3.1)
  • Input: *.sam
  • Output: *.bam
  • Options: -Sb

3.6 bam_sort_index

  • Program: samtools sort and samtools index (1.3.1)
  • Input: *.bam
  • Output: *.bam and *.bai
  • Option: defaults

3.7 count_features

  • Program: featureCounts (1.5.1)
  • Input: *.bam and the annotation gtf file for the mm10 mouse genome.
  • Output: *.txt
  • Option: defaults

3.8 fastqc

  • Program: fastqc (0.11.5)
  • Input: *.fastq.gz, *.sam and *.bam
  • Output: *_fastqc.zip
  • Option: defaults

adiporeg_chip's People

Contributors

mahshaaban avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.