Giter VIP home page Giter VIP logo

popper's Introduction

Popper

Popper is an inductive logic programming (ILP) system.

If you use Popper, please cite the paper: Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Mach. Learn. 110(4): 801-856 (2021)

Requirements

  • pyswip (You must install pyswip from the master branch! with the command: pip install git+https://github.com/yuce/pyswip@master#egg=pyswip)
  • SWI-Prolog (8.4.2 or above)
  • Clingo (5.5.0 or above)

Installation

To install the master branch, run the command: pip install git+https://github.com/logic-and-learning-lab/Popper@main

Command line usage

You can run Popper with the command python popper.py <input dir>. For instance, the command python popper.py examples/dropk produces:

********** SOLUTION **********
Precision:1.00 Recall:1.00 TP:10 FN:0 TN:10 FP:0 Size:7
f(A,B,C):- tail(A,C),one(B).
f(A,B,C):- decrement(B,E),tail(A,D),f(D,E,C).
******************************

The command python popper.py examples/trains1 produces:

********** SOLUTION **********
Precision:1.00 Recall:1.00 TP:394 FN:0 TN:606 FP:0 Size:6
f(A):- has_car(A,C),has_car(A,B),long(B),three_wheels(C),roof_closed(B).
******************************

Look at the examples for guidance.

Library usage

You can import Popper and use it in your Python code like so:

from popper.util import Settings, print_prog_score
from popper.loop import learn_solution

settings = Settings(kbpath='input_dir')
prog, score, stats = learn_solution(settings)
if prog != None:
    print_prog_score(prog, score)

Example problem

Popper requires three files:

  • an examples file
  • a background knowledge (BK) file
  • a bias file

An examples file contains positive and negative examples of the relation you want to learn:

pos(grandparent(ann,amelia)).
pos(grandparent(steve,amelia)).
pos(grandparent(ann,spongebob)).
pos(grandparent(steve,spongebob)).
pos(grandparent(linda,amelia)).
neg(grandparent(amy,amelia)).

A BK file contains other information about the problem:

mother(ann,amy).
mother(ann,andy).
mother(amy,amelia).
mother(linda,gavin).
father(steve,amy).
father(steve,andy).
father(gavin,amelia).
father(andy,spongebob).

A bias file contains the information necessary to restrict the search space of Popper. Predicate declarations tell Popper which predicate symbols it can use in the head or body of a rule, such as:

head_pred(grandparent,2).
body_pred(mother,2).
body_pred(father,2).

These declarations say that each rule in a program must have the symbol grandparent with arity two in the head and mother and/or father in the body, also with arity two. If we call Popper with these three files it will produce the output:

grandparent(A,B):-mother(A,C),father(C,B).
grandparent(A,B):-father(A,C),mother(C,B).
grandparent(A,B):-father(A,C),father(C,B).
grandparent(A,B):-mother(A,C),mother(C,B).
% Precision:1.00, Recall:1.00, TP:5, FN:0, TN:1, FP:0

Bias

Popper has three main bias settings:

  • max_vars(N) sets the maximum number of variables in a rule to N (default: 6)
  • max_body(N) sets the maximum number of body literals in a rule to N (default: 6)
  • max_clauses(N) sets the maximum number of rules/clauses to N (default: 1 or 2 if enable_recursion is set)

These parameters are important. They greatly influence the search space. If the values are too high then Popper might struggle to learn a solution. If the settings are too low then the search space might be too small to contain a good solution. You can set these settings in the bias file or through the command line (see --help).

Finding suitable values can often be a process of trial and error. We are trying to automatically set these settings.

Do not supply max_clauses if you are learning non-recursive programs.

Anytime

Popper is an anytime algorithm. By default, it shows intermediate solutions. For instance, the command python popper.py examples/dropk produces:

08:08:54 Num. pos examples: 10
08:08:54 Num. neg examples: 10
08:08:54 Searching programs of size: 3
08:08:54 Searching programs of size: 4
08:08:54 Searching programs of size: 5
08:08:54 Searching programs of size: 6
08:08:54 ********************
08:08:54 New best hypothesis:
08:08:54 tp:1 fn:9 size:6
08:08:54 f(A,B,C):- tail(E,C),tail(D,F),tail(F,E),even(B),tail(A,D).
08:08:54 ********************
08:08:56 Searching programs of size: 7
08:08:57 ********************
08:08:57 New best hypothesis:
08:08:57 tp:10 fn:0 size:13
08:08:57 f(A,B,C):- tail(A,C),element(A,B).
08:08:57 f(A,B,C):- tail(E,C),tail(D,F),tail(F,E),even(B),tail(A,D).
08:08:57 f(A,B,C):- decrement(B,D),tail(E,C),f(A,D,E).
08:08:57 ********************
08:08:58 ********************
08:08:58 New best hypothesis:
08:08:58 tp:10 fn:0 size:7
08:08:58 f(A,B,C):- tail(A,C),one(B).
08:08:58 f(A,B,C):- f(A,E,D),tail(D,C),decrement(B,E).
08:08:58 ********************
********** SOLUTION **********
Precision:1.00 Recall:1.00 TP:10 FN:0 TN:10 FP:0 Size:7
f(A,B,C):- tail(A,C),one(B).
f(A,B,C):- decrement(B,E),f(A,E,D),tail(D,C).
******************************

To suppress this information, run Popper with the --quiet (-q) flag.

Recursion

To enable recursion add enable_recursion. to the bias file. Recursion allows Popper to learn programs where a predicate symbol appears in both the head and body of a rule, such as to find a duplicate element (python popper.py examples/find-dupl) in a list:

f(A,B):-head(A,B),tail(A,C),element(C,B).
f(A,B):-tail(A,C),f(C,B).

Or to remove (python popper.py examples/filter) non-even elements from a list:

f(A,B):-empty(A),empty(B).
f(A,B):-tail(A,D),head(A,C),odd(C),f(D,B).
f(A,B):-head(A,E),even(E),tail(A,C),f(C,D),prepend(E,D,B).

Recursion is expensive, so it is best to try without it first.

Types

Popper supports optional type annotations in the bias file. A type annotation is of the form type(p,(t1,t2,...,tk) for a predicate symbol p with arity k, such as:

type(f,(list,list)).
type(head,(list,element)).
type(tail,(list,list)).
type(empty,(list,)).
type(odd,(element,)).
type(even,(element,)).
type(prepend,(element,list,list)).

These types are optional but can substantially reduce learning times.

Directions

Prolog often requires arguments to be ground. For instance, when asking Prolog to answer the query:

X is 3+K.

It throws an error:

ERROR: Arguments are not sufficiently instantiated

Moreover, we want to reduce the number of answers from a query. For instance, calling the length predicate with only variables leads to an infinite set of answers.

To avoid this issues, Popper supports optional direction annotations. A direction annotation is of the form direction(p,(d1,d2,...,dk) for a predicate symbol p with arity k, where each di is either in or out. An in variable must be ground when calling the relation. By contrast, an out variable need not be ground. Here are example directions:

direction(head,(in,out)).
direction(tail,(in,out)).
direction(length,(in,out)).
direction(prepend,(in,in,out)).
direction(geq,(in,in)).

Again, directions are optional but can substantially reduce learning times.

Predicate invention

Popper supports automatic predicate invention (PI). To enable PI, add the setting enable_pi. to the bias file. With PI enabled, Popper (python popper.py examples/kinship-pi) learns the following program:

grandparent(A,B):-inv1(C,B),inv1(A,C).
inv1(A,B):-mother(A,B).
inv1(A,B):-father(A,B).
% Precision:1.00, Recall:1.00, TP:5, FN:0, TN:1, FP:0

Predicate invention is currently very expensive so it is best to avoid it if possible.

Popper settings

To run with statistics use the flag --stats (default: false)

To run in debug mode use the flag --debug (default: false)

To run in quiet mode use the flag --quiet (default: False)

To run with BK constraint discover (Datalog programs only) use the flag --bkcons (default: False)

To run with a maximum learning time use the flag --timeout (default: 600 seconds)

To run with a maximum example testing (only applies when learning recursive programs) time use the flag --eval-timeout (default: 0.001 seconds)

To allow non-Datalog clauses, where a variable in the head need not appear in the body, add ``non_datalog.` to your bias file.

To allow singleton variables (variables that only appear once in a clause), add allow_singletons. to your bias file.

To set the maximum number of literals allow in a program use the flag --max-literals (default: 40)

To set the maximum number of body literals allowed in the body of a rule use the flag --max-body (default: 6)

To set the maximum number of variables allowed in a rule use the flag --max-vars (default: 6)

To set the maximum number of examples to learn from use the flag --max-examples (default: 10000)

popper's People

Contributors

andrewcropper avatar rolfmorel avatar oghenejokpeme avatar tomsilver avatar celinehocquette avatar bhntr avatar abhijeetkrishnan avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.