Giter VIP home page Giter VIP logo

go-deep's People

Contributors

futjikato avatar mellekoning avatar patrikeh avatar wwhai avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

go-deep's Issues

Feature Request: Add Mish activation

Mish is a new novel activation function proposed in this paper.
It has shown promising results so far and has been adopted in several packages including:

All benchmarks, analysis and links to official package implementations can be found in this repository

It would be nice to have Mish as an option within the activation function group.

This is the comparison of Mish with other conventional activation functions in a SEResNet-50 for CIFAR-10:
se50_1

[Help] Why output have 3 number?

When I try to predict:

//
	trainer.Train(neural, data, data, 5000)
	testData1 := []float64{13.05, 1.65, 2.55, 18, 98, 2.45, 2.43, .29, 1.44, 4.25, 1.12, 2.51, 1105}
	testData2 := []float64{12.16, 1.61, 2.31, 22.8, 90, 1.78, 1.69, .43, 1.56, 2.45, 1.33, 2.26, 495}
	testData3 := []float64{13.17, 2.59, 2.37, 20, 120, 1.65, .68, .53, 1.46, 9.3, .6, 1.62, 840}
	result1 := neural.Predict(testData1)
	result2 := neural.Predict(testData2)
	result3 := neural.Predict(testData3)
	t.Log(result1)
	t.Log(result2)
	t.Log(result3)
//

go-deep output :

godeep_wine_test.go:57: [0.9999999731472882 1.3716952393578034e-11 2.6838994748831026e-08]
godeep_wine_test.go:58: [1.0544492493308024e-06 0.9365886960309127 0.06341024951983812]
godeep_wine_test.go:59: [0.9999999731472882 1.3716952393578034e-11 2.6838994748831026e-08]

I noticed that wine simple data only have one tag. Why output have 3 number output [1.0544492493308024e-06 0.9365886960309127 0.06341024951983812]?

Question about sparse networks

Is connecting a sparse network similar to what is being done in NewNeural() supposed to work? I noticed the batch trainer uses NewNeural() internally.

wine data test results are not very accurate

wine data test results are not very accurate

Testcode:

func Test_wine_demo(t *testing.T) {

	rand.Seed(time.Now().UnixNano())

	data := training.Examples{
		{Input: []float64{14.23, 1.71, 2.43, 15.6, 127, 2.8, 3.06, 0.28, 2.29, 5.64, 1.04, 3.92, 1065}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.2, 1.78, 2.14, 11.2, 100, 2.65, 2.76, 0.26, 1.28, 4.38, 1.05, 3.4, 1050}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.16, 2.36, 2.67, 18.6, 101, 2.8, 3.24, 0.3, 2.81, 5.68, 1.03, 3.17, 1185}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.37, 1.95, 2.5, 16.8, 113, 3.85, 3.49, 0.24, 2.18, 7.8, 0.86, 3.45, 1480}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.24, 2.59, 2.87, 21, 118, 2.8, 2.69, 0.39, 1.82, 4.32, 1.04, 2.93, 735}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.2, 1.76, 2.45, 15.2, 112, 3.27, 3.39, 0.34, 1.97, 6.75, 1.05, 2.85, 1450}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.39, 1.87, 2.45, 14.6, 96, 2.5, 2.52, 0.3, 1.98, 5.25, 1.02, 3.58, 1290}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.06, 2.15, 2.61, 17.6, 121, 2.6, 2.51, 0.31, 1.25, 5.05, 1.06, 3.58, 1295}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.83, 1.64, 2.17, 14, 97, 2.8, 2.98, 0.29, 1.98, 5.2, 1.08, 2.85, 1045}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.86, 1.35, 2.27, 16, 98, 2.98, 3.15, 0.22, 1.85, 7.22, 1.01, 3.55, 1045}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.1, 2.16, 2.3, 18, 105, 2.95, 3.32, 0.22, 2.38, 5.75, 1.25, 3.17, 1510}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.12, 1.48, 2.32, 16.8, 95, 2.2, 2.43, 0.26, 1.57, 5, 1.17, 2.82, 1280}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.75, 1.73, 2.41, 16, 89, 2.6, 2.76, 0.29, 1.81, 5.6, 1.15, 2.9, 1320}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.75, 1.73, 2.39, 11.4, 91, 3.1, 3.69, 0.43, 2.81, 5.4, 1.25, 2.73, 1150}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.38, 1.87, 2.38, 12, 102, 3.3, 3.64, 0.29, 2.96, 7.5, 1.2, 3, 1547}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.63, 1.81, 2.7, 17.2, 112, 2.85, 2.91, 0.3, 1.46, 7.3, 1.28, 2.88, 1310}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.3, 1.92, 2.72, 20, 120, 2.8, 3.14, 0.33, 1.97, 6.2, 1.07, 2.65, 1280}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.83, 1.57, 2.62, 20, 115, 2.95, 3.4, 0.4, 1.72, 6.6, 1.13, 2.57, 1130}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.19, 1.59, 2.48, 16.5, 108, 3.3, 3.93, 0.32, 1.86, 8.7, 1.23, 2.82, 1680}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.64, 3.1, 2.56, 15.2, 116, 2.7, 3.03, 0.17, 1.66, 5.1, 0.96, 3.36, 845}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.06, 1.63, 2.28, 16, 126, 3, 3.17, 0.24, 2.1, 5.65, 1.09, 3.71, 780}, Response: []float64{0, 0, 1}},
		{Input: []float64{12.93, 3.8, 2.65, 18.6, 102, 2.41, 2.41, 0.25, 1.98, 4.5, 1.03, 3.52, 770}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.71, 1.86, 2.36, 16.6, 101, 2.61, 2.88, 0.27, 1.69, 3.8, 1.11, 4, 1035}, Response: []float64{0, 0, 1}},
		{Input: []float64{12.85, 1.6, 2.52, 17.8, 95, 2.48, 2.37, 0.26, 1.46, 3.93, 1.09, 3.63, 1015}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.5, 1.81, 2.61, 20, 96, 2.53, 2.61, 0.28, 1.66, 3.52, 1.12, 3.82, 845}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.05, 2.05, 3.22, 25, 124, 2.63, 2.68, 0.47, 1.92, 3.58, 1.13, 3.2, 830}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.39, 1.77, 2.62, 16.1, 93, 2.85, 2.94, 0.34, 1.45, 4.8, 0.92, 3.22, 1195}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.3, 1.72, 2.14, 17, 94, 2.4, 2.19, 0.27, 1.35, 3.95, 1.02, 2.77, 1285}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.87, 1.9, 2.8, 19.4, 107, 2.95, 2.97, 0.37, 1.76, 4.5, 1.25, 3.4, 915}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.02, 1.68, 2.21, 16, 96, 2.65, 2.33, 0.26, 1.98, 4.7, 1.04, 3.59, 1035}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.73, 1.5, 2.7, 22.5, 101, 3, 3.25, 0.29, 2.38, 5.7, 1.19, 2.71, 1285}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.58, 1.66, 2.36, 19.1, 106, 2.86, 3.19, 0.22, 1.95, 6.9, 1.09, 2.88, 1515}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.68, 1.83, 2.36, 17.2, 104, 2.42, 2.69, 0.42, 1.97, 3.84, 1.23, 2.87, 990}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.76, 1.53, 2.7, 19.5, 132, 2.95, 2.74, 0.5, 1.35, 5.4, 1.25, 3, 1235}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.51, 1.8, 2.65, 19, 110, 2.35, 2.53, 0.29, 1.54, 4.2, 1.1, 2.87, 1095}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.48, 1.81, 2.41, 20.5, 100, 2.7, 2.98, 0.26, 1.86, 5.1, 1.04, 3.47, 920}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.28, 1.64, 2.84, 15.5, 110, 2.6, 2.68, 0.34, 1.36, 4.6, 1.09, 2.78, 880}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.05, 1.65, 2.55, 18, 98, 2.45, 2.43, 0.29, 1.44, 4.25, 1.12, 2.51, 1105}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.07, 1.5, 2.1, 15.5, 98, 2.4, 2.64, 0.28, 1.37, 3.7, 1.18, 2.69, 1020}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.22, 3.99, 2.51, 13.2, 128, 3, 3.04, 0.2, 2.08, 5.1, 0.89, 3.53, 760}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.56, 1.71, 2.31, 16.2, 117, 3.15, 3.29, 0.34, 2.34, 6.13, 0.95, 3.38, 795}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.41, 3.84, 2.12, 18.8, 90, 2.45, 2.68, 0.27, 1.48, 4.28, 0.91, 3, 1035}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.88, 1.89, 2.59, 15, 101, 3.25, 3.56, 0.17, 1.7, 5.43, 0.88, 3.56, 1095}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.24, 3.98, 2.29, 17.5, 103, 2.64, 2.63, 0.32, 1.66, 4.36, 0.82, 3, 680}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.05, 1.77, 2.1, 17, 107, 3, 3, 0.28, 2.03, 5.04, 0.88, 3.35, 885}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.21, 4.04, 2.44, 18.9, 111, 2.85, 2.65, 0.3, 1.25, 5.24, 0.87, 3.33, 1080}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.38, 3.59, 2.28, 16, 102, 3.25, 3.17, 0.27, 2.19, 4.9, 1.04, 3.44, 1065}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.9, 1.68, 2.12, 16, 101, 3.1, 3.39, 0.21, 2.14, 6.1, 0.91, 3.33, 985}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.1, 2.02, 2.4, 18.8, 103, 2.75, 2.92, 0.32, 2.38, 6.2, 1.07, 2.75, 1060}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.94, 1.73, 2.27, 17.4, 108, 2.88, 3.54, 0.32, 2.08, 8.9, 1.12, 3.1, 1260}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.05, 1.73, 2.04, 12.4, 92, 2.72, 3.27, 0.17, 2.91, 7.2, 1.12, 2.91, 1150}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.83, 1.65, 2.6, 17.2, 94, 2.45, 2.99, 0.22, 2.29, 5.6, 1.24, 3.37, 1265}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.82, 1.75, 2.42, 14, 111, 3.88, 3.74, 0.32, 1.87, 7.05, 1.01, 3.26, 1190}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.77, 1.9, 2.68, 17.1, 115, 3, 2.79, 0.39, 1.68, 6.3, 1.13, 2.93, 1375}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.74, 1.67, 2.25, 16.4, 118, 2.6, 2.9, 0.21, 1.62, 5.85, 0.92, 3.2, 1060}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.56, 1.73, 2.46, 20.5, 116, 2.96, 2.78, 0.2, 2.45, 6.25, 0.98, 3.03, 1120}, Response: []float64{0, 0, 1}},
		{Input: []float64{14.22, 1.7, 2.3, 16.3, 118, 3.2, 3, 0.26, 2.03, 6.38, 0.94, 3.31, 970}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.29, 1.97, 2.68, 16.8, 102, 3, 3.23, 0.31, 1.66, 6, 1.07, 2.84, 1270}, Response: []float64{0, 0, 1}},
		{Input: []float64{13.72, 1.43, 2.5, 16.7, 108, 3.4, 3.67, 0.19, 2.04, 6.8, 0.89, 2.87, 1285}, Response: []float64{0, 0, 1}},
		{Input: []float64{12.37, 0.94, 1.36, 10.6, 88, 1.98, 0.57, 0.28, 0.42, 1.95, 1.05, 1.82, 520}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.33, 1.1, 2.28, 16, 101, 2.05, 1.09, 0.63, 0.41, 3.27, 1.25, 1.67, 680}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.64, 1.36, 2.02, 16.8, 100, 2.02, 1.41, 0.53, 0.62, 5.75, 0.98, 1.59, 450}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.67, 1.25, 1.92, 18, 94, 2.1, 1.79, 0.32, 0.73, 3.8, 1.23, 2.46, 630}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.37, 1.13, 2.16, 19, 87, 3.5, 3.1, 0.19, 1.87, 4.45, 1.22, 2.87, 420}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.17, 1.45, 2.53, 19, 104, 1.89, 1.75, 0.45, 1.03, 2.95, 1.45, 2.23, 355}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.37, 1.21, 2.56, 18.1, 98, 2.42, 2.65, 0.37, 2.08, 4.6, 1.19, 2.3, 678}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.11, 1.01, 1.7, 15, 78, 2.98, 3.18, 0.26, 2.28, 5.3, 1.12, 3.18, 502}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.37, 1.17, 1.92, 19.6, 78, 2.11, 2, 0.27, 1.04, 4.68, 1.12, 3.48, 510}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.34, 0.94, 2.36, 17, 110, 2.53, 1.3, 0.55, 0.42, 3.17, 1.02, 1.93, 750}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.21, 1.19, 1.75, 16.8, 151, 1.85, 1.28, 0.14, 2.5, 2.85, 1.28, 3.07, 718}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.29, 1.61, 2.21, 20.4, 103, 1.1, 1.02, 0.37, 1.46, 3.05, 0.906, 1.82, 870}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.86, 1.51, 2.67, 25, 86, 2.95, 2.86, 0.21, 1.87, 3.38, 1.36, 3.16, 410}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.49, 1.66, 2.24, 24, 87, 1.88, 1.84, 0.27, 1.03, 3.74, 0.98, 2.78, 472}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.99, 1.67, 2.6, 30, 139, 3.3, 2.89, 0.21, 1.96, 3.35, 1.31, 3.5, 985}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.96, 1.09, 2.3, 21, 101, 3.38, 2.14, 0.13, 1.65, 3.21, 0.99, 3.13, 886}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.66, 1.88, 1.92, 16, 97, 1.61, 1.57, 0.34, 1.15, 3.8, 1.23, 2.14, 428}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.03, 0.9, 1.71, 16, 86, 1.95, 2.03, 0.24, 1.46, 4.6, 1.19, 2.48, 392}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.84, 2.89, 2.23, 18, 112, 1.72, 1.32, 0.43, 0.95, 2.65, 0.96, 2.52, 500}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.33, 0.99, 1.95, 14.8, 136, 1.9, 1.85, 0.35, 2.76, 3.4, 1.06, 2.31, 750}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.7, 3.87, 2.4, 23, 101, 2.83, 2.55, 0.43, 1.95, 2.57, 1.19, 3.13, 463}, Response: []float64{0, 1, 0}},
		{Input: []float64{12, 0.92, 2, 19, 86, 2.42, 2.26, 0.3, 1.43, 2.5, 1.38, 3.12, 278}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.72, 1.81, 2.2, 18.8, 86, 2.2, 2.53, 0.26, 1.77, 3.9, 1.16, 3.14, 714}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.08, 1.13, 2.51, 24, 78, 2, 1.58, 0.4, 1.4, 2.2, 1.31, 2.72, 630}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.05, 3.86, 2.32, 22.5, 85, 1.65, 1.59, 0.61, 1.62, 4.8, 0.84, 2.01, 515}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.84, 0.89, 2.58, 18, 94, 2.2, 2.21, 0.22, 2.35, 3.05, 0.79, 3.08, 520}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.67, 0.98, 2.24, 18, 99, 2.2, 1.94, 0.3, 1.46, 2.62, 1.23, 3.16, 450}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.16, 1.61, 2.31, 22.8, 90, 1.78, 1.69, 0.43, 1.56, 2.45, 1.33, 2.26, 495}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.65, 1.67, 2.62, 26, 88, 1.92, 1.61, 0.4, 1.34, 2.6, 1.36, 3.21, 562}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.64, 2.06, 2.46, 21.6, 84, 1.95, 1.69, 0.48, 1.35, 2.8, 1, 2.75, 680}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.08, 1.33, 2.3, 23.6, 70, 2.2, 1.59, 0.42, 1.38, 1.74, 1.07, 3.21, 625}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.08, 1.83, 2.32, 18.5, 81, 1.6, 1.5, 0.52, 1.64, 2.4, 1.08, 2.27, 480}, Response: []float64{0, 1, 0}},
		{Input: []float64{12, 1.51, 2.42, 22, 86, 1.45, 1.25, 0.5, 1.63, 3.6, 1.05, 2.65, 450}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.69, 1.53, 2.26, 20.7, 80, 1.38, 1.46, 0.58, 1.62, 3.05, 0.96, 2.06, 495}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.29, 2.83, 2.22, 18, 88, 2.45, 2.25, 0.25, 1.99, 2.15, 1.15, 3.3, 290}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.62, 1.99, 2.28, 18, 98, 3.02, 2.26, 0.17, 1.35, 3.25, 1.16, 2.96, 345}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.47, 1.52, 2.2, 19, 162, 2.5, 2.27, 0.32, 3.28, 2.6, 1.16, 2.63, 937}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.81, 2.12, 2.74, 21.5, 134, 1.6, 0.99, 0.14, 1.56, 2.5, 0.95, 2.26, 625}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.29, 1.41, 1.98, 16, 85, 2.55, 2.5, 0.29, 1.77, 2.9, 1.23, 2.74, 428}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.37, 1.07, 2.1, 18.5, 88, 3.52, 3.75, 0.24, 1.95, 4.5, 1.04, 2.77, 660}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.29, 3.17, 2.21, 18, 88, 2.85, 2.99, 0.45, 2.81, 2.3, 1.42, 2.83, 406}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.08, 2.08, 1.7, 17.5, 97, 2.23, 2.17, 0.26, 1.4, 3.3, 1.27, 2.96, 710}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.6, 1.34, 1.9, 18.5, 88, 1.45, 1.36, 0.29, 1.35, 2.45, 1.04, 2.77, 562}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.34, 2.45, 2.46, 21, 98, 2.56, 2.11, 0.34, 1.31, 2.8, 0.8, 3.38, 438}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.82, 1.72, 1.88, 19.5, 86, 2.5, 1.64, 0.37, 1.42, 2.06, 0.94, 2.44, 415}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.51, 1.73, 1.98, 20.5, 85, 2.2, 1.92, 0.32, 1.48, 2.94, 1.04, 3.57, 672}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.42, 2.55, 2.27, 22, 90, 1.68, 1.84, 0.66, 1.42, 2.7, 0.86, 3.3, 315}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.25, 1.73, 2.12, 19, 80, 1.65, 2.03, 0.37, 1.63, 3.4, 1, 3.17, 510}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.72, 1.75, 2.28, 22.5, 84, 1.38, 1.76, 0.48, 1.63, 3.3, 0.88, 2.42, 488}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.22, 1.29, 1.94, 19, 92, 2.36, 2.04, 0.39, 2.08, 2.7, 0.86, 3.02, 312}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.61, 1.35, 2.7, 20, 94, 2.74, 2.92, 0.29, 2.49, 2.65, 0.96, 3.26, 680}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.46, 3.74, 1.82, 19.5, 107, 3.18, 2.58, 0.24, 3.58, 2.9, 0.75, 2.81, 562}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.52, 2.43, 2.17, 21, 88, 2.55, 2.27, 0.26, 1.22, 2, 0.9, 2.78, 325}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.76, 2.68, 2.92, 20, 103, 1.75, 2.03, 0.6, 1.05, 3.8, 1.23, 2.5, 607}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.41, 0.74, 2.5, 21, 88, 2.48, 2.01, 0.42, 1.44, 3.08, 1.1, 2.31, 434}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.08, 1.39, 2.5, 22.5, 84, 2.56, 2.29, 0.43, 1.04, 2.9, 0.93, 3.19, 385}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.03, 1.51, 2.2, 21.5, 85, 2.46, 2.17, 0.52, 2.01, 1.9, 1.71, 2.87, 407}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.82, 1.47, 1.99, 20.8, 86, 1.98, 1.6, 0.3, 1.53, 1.95, 0.95, 3.33, 495}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.42, 1.61, 2.19, 22.5, 108, 2, 2.09, 0.34, 1.61, 2.06, 1.06, 2.96, 345}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.77, 3.43, 1.98, 16, 80, 1.63, 1.25, 0.43, 0.83, 3.4, 0.7, 2.12, 372}, Response: []float64{0, 1, 0}},
		{Input: []float64{12, 3.43, 2, 19, 87, 2, 1.64, 0.37, 1.87, 1.28, 0.93, 3.05, 564}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.45, 2.4, 2.42, 20, 96, 2.9, 2.79, 0.32, 1.83, 3.25, 0.8, 3.39, 625}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.56, 2.05, 3.23, 28.5, 119, 3.18, 5.08, 0.47, 1.87, 6, 0.93, 3.69, 465}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.42, 4.43, 2.73, 26.5, 102, 2.2, 2.13, 0.43, 1.71, 2.08, 0.92, 3.12, 365}, Response: []float64{0, 1, 0}},
		{Input: []float64{13.05, 5.8, 2.13, 21.5, 86, 2.62, 2.65, 0.3, 2.01, 2.6, 0.73, 3.1, 380}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.87, 4.31, 2.39, 21, 82, 2.86, 3.03, 0.21, 2.91, 2.8, 0.75, 3.64, 380}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.07, 2.16, 2.17, 21, 85, 2.6, 2.65, 0.37, 1.35, 2.76, 0.86, 3.28, 378}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.43, 1.53, 2.29, 21.5, 86, 2.74, 3.15, 0.39, 1.77, 3.94, 0.69, 2.84, 352}, Response: []float64{0, 1, 0}},
		{Input: []float64{11.79, 2.13, 2.78, 28.5, 92, 2.13, 2.24, 0.58, 1.76, 3, 0.97, 2.44, 466}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.37, 1.63, 2.3, 24.5, 88, 2.22, 2.45, 0.4, 1.9, 2.12, 0.89, 2.78, 342}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.04, 4.3, 2.38, 22, 80, 2.1, 1.75, 0.42, 1.35, 2.6, 0.79, 2.57, 580}, Response: []float64{0, 1, 0}},
		{Input: []float64{12.86, 1.35, 2.32, 18, 122, 1.51, 1.25, 0.21, 0.94, 4.1, 0.76, 1.29, 630}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.88, 2.99, 2.4, 20, 104, 1.3, 1.22, 0.24, 0.83, 5.4, 0.74, 1.42, 530}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.81, 2.31, 2.4, 24, 98, 1.15, 1.09, 0.27, 0.83, 5.7, 0.66, 1.36, 560}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.7, 3.55, 2.36, 21.5, 106, 1.7, 1.2, 0.17, 0.84, 5, 0.78, 1.29, 600}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.51, 1.24, 2.25, 17.5, 85, 2, 0.58, 0.6, 1.25, 5.45, 0.75, 1.51, 650}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.6, 2.46, 2.2, 18.5, 94, 1.62, 0.66, 0.63, 0.94, 7.1, 0.73, 1.58, 695}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.25, 4.72, 2.54, 21, 89, 1.38, 0.47, 0.53, 0.8, 3.85, 0.75, 1.27, 720}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.53, 5.51, 2.64, 25, 96, 1.79, 0.6, 0.63, 1.1, 5, 0.82, 1.69, 515}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.49, 3.59, 2.19, 19.5, 88, 1.62, 0.48, 0.58, 0.88, 5.7, 0.81, 1.82, 580}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.84, 2.96, 2.61, 24, 101, 2.32, 0.6, 0.53, 0.81, 4.92, 0.89, 2.15, 590}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.93, 2.81, 2.7, 21, 96, 1.54, 0.5, 0.53, 0.75, 4.6, 0.77, 2.31, 600}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.36, 2.56, 2.35, 20, 89, 1.4, 0.5, 0.37, 0.64, 5.6, 0.7, 2.47, 780}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.52, 3.17, 2.72, 23.5, 97, 1.55, 0.52, 0.5, 0.55, 4.35, 0.89, 2.06, 520}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.62, 4.95, 2.35, 20, 92, 2, 0.8, 0.47, 1.02, 4.4, 0.91, 2.05, 550}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.25, 3.88, 2.2, 18.5, 112, 1.38, 0.78, 0.29, 1.14, 8.21, 0.65, 2, 855}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.16, 3.57, 2.15, 21, 102, 1.5, 0.55, 0.43, 1.3, 4, 0.6, 1.68, 830}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.88, 5.04, 2.23, 20, 80, 0.98, 0.34, 0.4, 0.68, 4.9, 0.58, 1.33, 415}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.87, 4.61, 2.48, 21.5, 86, 1.7, 0.65, 0.47, 0.86, 7.65, 0.54, 1.86, 625}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.32, 3.24, 2.38, 21.5, 92, 1.93, 0.76, 0.45, 1.25, 8.42, 0.55, 1.62, 650}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.08, 3.9, 2.36, 21.5, 113, 1.41, 1.39, 0.34, 1.14, 9.4, 0.57, 1.33, 550}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.5, 3.12, 2.62, 24, 123, 1.4, 1.57, 0.22, 1.25, 8.6, 0.59, 1.3, 500}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.79, 2.67, 2.48, 22, 112, 1.48, 1.36, 0.24, 1.26, 10.8, 0.48, 1.47, 480}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.11, 1.9, 2.75, 25.5, 116, 2.2, 1.28, 0.26, 1.56, 7.1, 0.61, 1.33, 425}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.23, 3.3, 2.28, 18.5, 98, 1.8, 0.83, 0.61, 1.87, 10.52, 0.56, 1.51, 675}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.58, 1.29, 2.1, 20, 103, 1.48, 0.58, 0.53, 1.4, 7.6, 0.58, 1.55, 640}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.17, 5.19, 2.32, 22, 93, 1.74, 0.63, 0.61, 1.55, 7.9, 0.6, 1.48, 725}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.84, 4.12, 2.38, 19.5, 89, 1.8, 0.83, 0.48, 1.56, 9.01, 0.57, 1.64, 480}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.45, 3.03, 2.64, 27, 97, 1.9, 0.58, 0.63, 1.14, 7.5, 0.67, 1.73, 880}, Response: []float64{1, 0, 0}},
		{Input: []float64{14.34, 1.68, 2.7, 25, 98, 2.8, 1.31, 0.53, 2.7, 13, 0.57, 1.96, 660}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.48, 1.67, 2.64, 22.5, 89, 2.6, 1.1, 0.52, 2.29, 11.75, 0.57, 1.78, 620}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.36, 3.83, 2.38, 21, 88, 2.3, 0.92, 0.5, 1.04, 7.65, 0.56, 1.58, 520}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.69, 3.26, 2.54, 20, 107, 1.83, 0.56, 0.5, 0.8, 5.88, 0.96, 1.82, 680}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.85, 3.27, 2.58, 22, 106, 1.65, 0.6, 0.6, 0.96, 5.58, 0.87, 2.11, 570}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.96, 3.45, 2.35, 18.5, 106, 1.39, 0.7, 0.4, 0.94, 5.28, 0.68, 1.75, 675}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.78, 2.76, 2.3, 22, 90, 1.35, 0.68, 0.41, 1.03, 9.58, 0.7, 1.68, 615}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.73, 4.36, 2.26, 22.5, 88, 1.28, 0.47, 0.52, 1.15, 6.62, 0.78, 1.75, 520}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.45, 3.7, 2.6, 23, 111, 1.7, 0.92, 0.43, 1.46, 10.68, 0.85, 1.56, 695}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.82, 3.37, 2.3, 19.5, 88, 1.48, 0.66, 0.4, 0.97, 10.26, 0.72, 1.75, 685}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.58, 2.58, 2.69, 24.5, 105, 1.55, 0.84, 0.39, 1.54, 8.66, 0.74, 1.8, 750}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.4, 4.6, 2.86, 25, 112, 1.98, 0.96, 0.27, 1.11, 8.5, 0.67, 1.92, 630}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.2, 3.03, 2.32, 19, 96, 1.25, 0.49, 0.4, 0.73, 5.5, 0.66, 1.83, 510}, Response: []float64{1, 0, 0}},
		{Input: []float64{12.77, 2.39, 2.28, 19.5, 86, 1.39, 0.51, 0.48, 0.64, 9.899999, 0.57, 1.63, 470}, Response: []float64{1, 0, 0}},
		{Input: []float64{14.16, 2.51, 2.48, 20, 91, 1.68, 0.7, 0.44, 1.24, 9.7, 0.62, 1.71, 660}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.71, 5.65, 2.45, 20.5, 95, 1.68, 0.61, 0.52, 1.06, 7.7, 0.64, 1.74, 740}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.4, 3.91, 2.48, 23, 102, 1.8, 0.75, 0.43, 1.41, 7.3, 0.7, 1.56, 750}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.27, 4.28, 2.26, 20, 120, 1.59, 0.69, 0.43, 1.35, 10.2, 0.59, 1.56, 835}, Response: []float64{1, 0, 0}},
		{Input: []float64{13.17, 2.59, 2.37, 20, 120, 1.65, 0.68, 0.53, 1.46, 9.3, 0.6, 1.62, 840}, Response: []float64{1, 0, 0}},
		{Input: []float64{14.13, 4.1, 2.74, 24.5, 96, 2.05, 0.76, 0.56, 1.35, 9.2, 0.61, 1.6, 560}, Response: []float64{1, 0, 0}},
	}

	for i := range data {
		deep.Standardize(data[i].Input)
		// t.Log(data[i].Input[0], data[i].Response)
	}
	data.Shuffle()

	fmt.Printf("have %d entries\n", len(data))

	neural := deep.NewNeural(&deep.Config{
		Inputs:     len(data[0].Input),
		Layout:     []int{5, 3},
		Activation: deep.ActivationSigmoid,
		Mode:       deep.ModeMultiClass,
		Weight:     deep.NewNormal(1, 0),
		Bias:       true,
	})
	// t.Log(neural.String())
	//trainer := training.NewTrainer(training.NewSGD(0.005, 0.5, 1e-6, true), 50)
	//trainer := training.NewBatchTrainer(training.NewSGD(0.005, 0.1, 0, true), 50, 300, 16)
	//trainer := training.NewTrainer(training.NewAdam(0.3, 0), 50)
	trainer := training.NewBatchTrainer(training.NewSGD(0.005, 0.1, 0, true), 50, 300, 16)
	//data, heldout := data.Split(0.5)
	trainer.Train(neural, data, data, 10000)
	testData1 := []float64{13.48, 1.81, 2.41, 20.5, 100, 2.7, 2.98, .26, 1.86, 5.1, 1.04, 3.47, 920}
	testData2 := []float64{12.37, 1.21, 2.56, 18.1, 98, 2.42, 2.65, .37, 2.08, 4.6, 1.19, 2.3, 678}
	testData3 := []float64{14.13, 4.1, 2.74, 24.5, 96, 2.05, .76, .56, 1.35, 9.2, .61, 1.6, 560}
	result1 := neural.Predict(testData1)
	result2 := neural.Predict(testData2)
	result3 := neural.Predict(testData3)
	t.Log(result1)
	t.Log(result2)
	t.Log(result3)
}

Output

  • 1
    godeep_wine_test.go:235: [0.04492230621063009 0.06510368089682408 0.8899740128925459]
    godeep_wine_test.go:236: [0.04492230621063009 0.06510368089682408 0.8899740128925459]
    godeep_wine_test.go:237: [0.5875463337465087 0.24358921339021378 0.1688644528632776]
  • 2
    godeep_wine_test.go:235: [6.005836072059106e-07 4.123962150664048e-06 0.9999952754542423]
    godeep_wine_test.go:236: [0.7439214548586517 0.19263133364316964 0.06344721149817864]
    godeep_wine_test.go:237: [0.7439214548588947 0.192631333643111 0.06344721149799419]
  • 3
    godeep_wine_test.go:235: [2.03594829215657e-06 6.759486831585679e-06 0.9999912045648762]
    godeep_wine_test.go:236: [0.6203063056779012 0.31067966990984386 0.06901402441225492]
    godeep_wine_test.go:237: [0.6203063056779012 0.31067966990984386 0.06901402441225492]

Support printer with interface

Would be great to support passing in an interface for the printer that the batch trainer uses, in order to implement custom stopping depending on loss. So loss would need to be part of the interface signature in numeric form.

Example showing errors

Hi, the example in the readme is giving errors:

// params: learning rate, momentum, alpha decay, nesterov
optimizer := training.NewSGD(0.05, 0.1, 1e-6, true)
// params: optimizer, verbosity (print stats at every 50th iteration)
trainer := training.NewTrainer(optimizer, 50)

Cannot use optimizer as (type *SGD) as type Solver

Using interfaces for activation and loss functions.

Currently there are a few Activation/Loss functions which are provided in go-deep. While internally these functions follow an interface, this is not completely exposed to the clients of this library. For example, If I would like to experiment with a new activation function I would not be able to without modifying the code in go-deep.

If we can expose the ability for clients of this library to provide their own activation functions by providing types that implement the Differentiable and Loss interfaces, I think the flexibility of this library will be greatly increased.

If this is something that sounds reasonable, I would be more than happy to take a crack at implementing this and submitting a merge request.

Train history feature

I'm using the library for some project, and I'm finding out how useful a training history feature is useful (as you can find in any soa library in python). Is there any plan for implement it ?

In any case, I'm starting a new one.

Save Neural struct in Disk

Hello,

I am trying to save the Neural structure to disk using "encoding / gob" but it seems that it does not work. Am I doing something wrong or should I use something else?

thank you

Nesterov flag

Why does the Nesterov flag not affect the result of calculations?
/training/solver.go:

// Update returns the update for a given weight
func (o *SGD) Update(value, gradient float64, iteration, idx int) float64 {
	lr := o.lr / (1 + o.decay*float64(iteration))

	o.moments[idx] = o.momentum*o.moments[idx] - lr*gradient

	if o.nesterov {
		o.moments[idx] = o.momentum*o.moments[idx] - lr*gradient
	}

	return o.moments[idx]
}

ReLU is not correct.

Hi!

There is a code in the activation.go:

func (a ReLU) F(x float64) float64 { return math.Max(x, 0) }

func (a ReLU) Df(y float64) float64 {
	if y > 0 {
		return 1
	}
	return 0
}

This is no correct!
The right option:

func (a ReLU) F(x float64) float64 { return math.Max(x, 0) }

func (a ReLU) Df(y float64) float64 {
	if y < 0 {
		return 1
	}
	return 0
}

For example: https://github.com/FluxML/NNlib.jl/blob/master/src/activations.jl

Q

Do you plan to develop the library further?
Thanks!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.