Giter VIP home page Giter VIP logo

labels's Introduction

A modular, open-source search engine for our world.

Pelias is a geocoder powered completely by open data, available freely to everyone.

Local Installation · Cloud Webservice · Documentation · Community Chat

What is Pelias?
Pelias is a search engine for places worldwide, powered by open data. It turns addresses and place names into geographic coordinates, and turns geographic coordinates into places and addresses. With Pelias, you’re able to turn your users’ place searches into actionable geodata and transform your geodata into real places.

We think open data, open source, and open strategy win over proprietary solutions at any part of the stack and we want to ensure the services we offer are in line with that vision. We believe that an open geocoder improves over the long-term only if the community can incorporate truly representative local knowledge.

Pelias

A modular, open-source geocoder built on top of Elasticsearch for fast and accurate global search.

What's a geocoder do anyway?

Geocoding is the process of taking input text, such as an address or the name of a place, and returning a latitude/longitude location on the Earth's surface for that place.

geocode

... and a reverse geocoder, what's that?

Reverse geocoding is the opposite: returning a list of places near a given latitude/longitude point.

reverse

What are the most interesting features of Pelias?

  • Completely open-source and MIT licensed
  • A powerful data import architecture: Pelias supports many open-data projects out of the box but also works great with private data
  • Support for searching and displaying results in many languages
  • Fast and accurate autocomplete for user-facing geocoding
  • Support for many result types: addresses, venues, cities, countries, and more
  • Modular design, so you don't need to be an expert in everything to make changes
  • Easy installation with minimal external dependencies

What are the main goals of the Pelias project?

  • Provide accurate search results
  • Work equally well for a small city and the entire planet
  • Be highly configurable, so different use cases can be handled easily and efficiently
  • Provide a friendly, welcoming, helpful community that takes input from people all over the world

Where did Pelias come from?

Pelias was created in 2014 as an early project at Mapzen. After Mapzen's shutdown in 2017, Pelias is now part of the Linux Foundation.

How does it work?

Magic! (Just kidding) Like any geocoder, Pelias combines full text search techniques with knowledge of geography to quickly search over many millions of records, each representing some sort of location on Earth.

The Pelias architecture has three main components and several smaller pieces.

A diagram of the Pelias architecture.

Data importers

The importers filter, normalize, and ingest geographic datasets into the Pelias database. Currently there are six officially supported importers:

We are always discussing supporting additional datasets. Pelias users can also write their own importers, for example to import proprietary data into your own instance of Pelias.

Database

The underlying datastore that does most of the query heavy-lifting and powers our search results. We use Elasticsearch. Currently versions 7 and 8 are supported.

We've built a tool called pelias-schema that sets up Elasticsearch indices properly for Pelias.

Frontend services

This is where the actual geocoding process happens, and includes the components that users interact with when performing geocoding queries. The services are:

  • API: The API service defines the Pelias API, and talks to Elasticsearch or other services as needed to perform queries.
  • Placeholder: A service built specifically to capture the relationship between administrative areas (a catch-all term meaning anything like a city, state, country, etc). Elasticsearch does not handle relational data very well, so we built Placeholder specifically to manage this piece.
  • PIP: For reverse geocoding, it's important to be able to perform point-in-polygon(PIP) calculations quickly. The PIP service is is very good at quickly determining which admin area polygons a given point lies in.
  • Libpostal: Pelias uses the libpostal project for parsing addresses using the power of machine learning. We use a Go service built by the Who's on First team to make this happen quickly and efficiently.
  • Interpolation: This service knows all about addresses and streets. With that knowledge, it is able to supplement the known addresses that are stored directly in Elasticsearch and return fairly accurate estimated address results for many more queries than would otherwise be possible.

Dependencies

These are software projects that are not used directly but are used by other components of Pelias.

There are lots of these, but here are some important ones:

  • model: provide a single library for creating documents that fit the Pelias Elasticsearch schema. This is a core component of our flexible importer architecture
  • wof-admin-lookup: A library for performing administrative lookup using point-in-polygon math. Previously included in each of the importers but now only used by the PIP service.
  • query: This is where most of our actual Elasticsearch query generation happens.
  • config: Pelias is very configurable, and all of it is driven from a single JSON file which we call pelias.json. This package provides a library for reading, validating, and working with this configuration. It is used by almost every other Pelias component
  • dbclient: A Node.js stream library for quickly and efficiently importing records into Elasticsearch

Helpful tools

Finally, while not part of Pelias proper, we have built several useful tools for working with and testing Pelias

Notable examples include:

  • acceptance-tests: A Node.js command line tool for testing a full planet build of Pelias and ensuring everything works. Familiarity with this tool is very important for ensuring Pelias is working. It supports all Pelias features and has special facilities for testing autocomplete queries.
  • compare: A web-based tool for comparing different instances of Pelias (for example a production and staging environment). We have a reference instance at pelias.github.io/compare/
  • dashboard: Another web-based tool for providing statistics about the contents of a Pelias Elasticsearch index such as import speed, number of total records, and a breakdown of records of various types.

Documentation

The main documentation lives in the pelias/documentation repository.

Additionally, the README file in each of the component repositories listed above provides more detail on that piece.

Here's an example API response for a reverse geocoding query
$ curl -s "search.mapzen.com/v1/reverse?size=1&point.lat=40.74358294846026&point.lon=-73.99047374725342&api_key={YOUR_API_KEY}" | json
{
    "geocoding": {
        "attribution": "https://search.mapzen.com/v1/attribution",
        "engine": {
            "author": "Mapzen",
            "name": "Pelias",
            "version": "1.0"
        },
        "query": {
            "boundary.circle.lat": 40.74358294846026,
            "boundary.circle.lon": -73.99047374725342,
            "boundary.circle.radius": 500,
            "point.lat": 40.74358294846026,
            "point.lon": -73.99047374725342,
            "private": false,
            "querySize": 1,
            "size": 1
        },
        "timestamp": 1460736907438,
        "version": "0.1"
    },
    "type": "FeatureCollection",
    "features": [
        {
            "geometry": {
                "coordinates": [
                    -73.99051,
                    40.74361
                ],
                "type": "Point"
            },
            "properties": {
                "borough": "Manhattan",
                "borough_gid": "whosonfirst:borough:421205771",
                "confidence": 0.9,
                "country": "United States",
                "country_a": "USA",
                "country_gid": "whosonfirst:country:85633793",
                "county": "New York County",
                "county_gid": "whosonfirst:county:102081863",
                "distance": 0.004,
                "gid": "geonames:venue:9851011",
                "id": "9851011",
                "label": "Arlington, Manhattan, NY, USA",
                "layer": "venue",
                "locality": "New York",
                "locality_gid": "whosonfirst:locality:85977539",
                "name": "Arlington",
                "neighbourhood": "Flatiron District",
                "neighbourhood_gid": "whosonfirst:neighbourhood:85869245",
                "region": "New York",
                "region_a": "NY",
                "region_gid": "whosonfirst:region:85688543",
                "source": "geonames"
            },
            "type": "Feature"
        }
    ],
    "bbox": [
        -73.99051,
        40.74361,
        -73.99051,
        40.74361
    ]
}

How can I install my own instance of Pelias?

To try out Pelias quickly, use our Docker setup. It uses Docker and docker-compose to allow you to quickly set up a Pelias instance for a small area (by default Portland, Oregon) in under 30 minutes.

Do you offer a free geocoding API?

You can sign up for a trial API key at Geocode Earth. A commercial service has been operated by the core development team behind Pelias since 2014 (previously at search.mapzen.com). Discounts and free plans are available for free and open-source software projects.

What's it built with?

Pelias itself (the import pipelines and API) is written in Node.js, which makes it highly accessible for other developers and performant under heavy I/O. It aims to be modular and is distributed across a number of Node packages, each with its own repository under the Pelias GitHub organization.

For a select few components that have performance requirements that Node.js cannot meet, we prefer to write things in Go. A good example of this is the pbf2json tool that quickly converts OSM PBF files to JSON for our OSM importer.

Elasticsearch is our datastore of choice because of its unparalleled full text search functionality, scalability, and sufficiently robust geospatial support.

Contributing

Gitter

We built Pelias as an open source project not just because we believe that users should be able to view and play with the source code of tools they use, but to get the community involved in the project itself.

Especially with a geocoder with global coverage, it's just not possible for a small team to do it alone. We need you.

Anything that we can do to make contributing easier, we want to know about. Feel free to reach out to us via Github, Gitter, email, or Twitter. We'd love to help people get started working on Pelias, especially if you're new to open source or programming in general.

We have a list of Good First Issues for new contributors.

Both this meta-repo and the API service repo are worth looking at, as they're where most issues live. We also welcome reporting issues or suggesting improvements to our documentation.

The current Pelias team can be found on Github as missinglink and orangejulius.

Members emeritus include:

labels's People

Contributors

aguiraf avatar blackmad avatar dianashk avatar greenkeeper[bot] avatar joxit avatar missinglink avatar orangejulius avatar trescube avatar

Stargazers

 avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

labels's Issues

label showing 'name, country'

In the case where we don't have a locality name the labels can be very vague such as this one which just says KFC, South Africa

      "properties": {
        "id": "way/640077183",
        "gid": "openstreetmap:venue:way/640077183",
        "layer": "venue",
        "source": "openstreetmap",
        "source_id": "way/640077183",
        "name": "KFC",
        "street": "Main Reef Road",
        "accuracy": "point",
        "country": "South Africa",
        "country_gid": "whosonfirst:country:85633813",
        "country_a": "ZAF",
        "region": "Gauteng",
        "region_gid": "whosonfirst:region:85688923",
        "region_a": "GT",
        "county": "West Rand",
        "county_gid": "whosonfirst:county:1108730543",
        "county_a": "WR",
        "continent": "Africa",
        "continent_gid": "whosonfirst:continent:102191573",
        "label": "KFC, South Africa"
      },

Idea: add more detail to labels based on other results

Right now, each result has its label determined only by the data in that record itself. This is easy, consistent, and simple. But sometimes I wonder if it makes sense to add more detail if a lot of results have labels that look similar, so that the results can be distinguished.

Consider this example from Mapillary that came from @eneerhut (thanks!)
screenshot from 2016-10-20 14-32-32

It looks at first like we are just bad at deduplicating, but in fact there are that many Zacatecas in the world:
screenshot from 2016-10-20 14-30-29

Even worse, some are regions, some are localities, some are even neighbourhoods, but you can't tell from the labels. Obviously, there's some leeway in the UI of things like Mapzen.js to add a little bit more information to what's displayed (showing the layer might help here, for example), but perhaps our labels could help.

This could also be useful for cases like in pelias/pelias#317, where searches for common restaurant chains gives back lots of identical results.

Parse order on the label field for Portugal

Hi,

i'm new to Pelias and i need help to understand how to change label field order.

For Portugal we use the street name flowed by the house number (and then the rest of the fields).

How is this configured in pelias ?

TIA
Nuno

United Kingdom

We don't need to include the Unitary state of United Kingdom in GBR labels, they only need to have the country name such as England, Scotland, Wales, Northern Ireland as per our other labels.

Screenshot 2021-02-17 at 21 52 33

default name / label

actually is configurable by pelias.json the default structure of address string? for the fields label,name
now is:

"housenumber street"

I seen that the data imported in ealsticseach having this structure, but I need of reverse order..

"street housenumber"
mainly I need this in the pelias/api results... in label fields!

fix labels for dependencies for USA

Treats existence of dependency fields as more important than country fields. Examples:

San Juan, PR (abbreviation exists)
Aasu, AS (abbreviation exists)
Altona, United States Virgin Islands (abbreviation doesn't exist)
Puerto Rico (result was dependency layer)

This change also excludes region if dependency fields exist, for example, San Juan is in the region of San Juan. Without this exclusion, the label would be San Juan, PR, PR. This exclusion shortens the label to San Juan, PR.

Fixes pelias/api#628

While this fixes the source issue, the example in pelias/api#628 is not fixed because Pago Pago has a broken hierarchy.

Add postcode to label

Where appropriate, we should add the postcode to labels.
most likely this would only apply to the address layer?

If coverage issues exist, we may wish to start by enabling it for countries with good coverage, maybe DE, NZ?

Version 10 of node.js has been released

Version 10 of Node.js (code name Dubnium) has been released! 🎊

To see what happens to your code in Node.js 10, Greenkeeper has created a branch with the following changes:

  • Added the new Node.js version to your .travis.yml
  • The new Node.js version is in-range for the engines in 1 of your package.json files, so that was left alone

If you’re interested in upgrading this repo to Node.js 10, you can open a PR with these changes. Please note that this issue is just intended as a friendly reminder and the PR as a possible starting point for getting your code running on Node.js 10.

More information on this issue

Greenkeeper has checked the engines key in any package.json file, the .nvmrc file, and the .travis.yml file, if present.

  • engines was only updated if it defined a single version, not a range.
  • .nvmrc was updated to Node.js 10
  • .travis.yml was only changed if there was a root-level node_js that didn’t already include Node.js 10, such as node or lts/*. In this case, the new version was appended to the list. We didn’t touch job or matrix configurations because these tend to be quite specific and complex, and it’s difficult to infer what the intentions were.

For many simpler .travis.yml configurations, this PR should suffice as-is, but depending on what you’re doing it may require additional work or may not be applicable at all. We’re also aware that you may have good reasons to not update to Node.js 10, which is why this was sent as an issue and not a pull request. Feel free to delete it without comment, I’m a humble robot and won’t feel rejected 🤖


FAQ and help

There is a collection of frequently asked questions. If those don’t help, you can always ask the humans behind Greenkeeper.


Your Greenkeeper Bot 🌴

Consider adopting ID config

We are getting the {{street}} {{housenumber}} order wrong for some countries as per pelias/api#1343

In that issue, I added a link to the config which the ID editor uses, we could probably adopt that.

Inconsistencies in labels

Hi there, I hope you are doing well

I was working on a refactoring to avoid duplicate names and wonder why do we need dedupeNameAndFirstLabelElement function...

I found this test which requires the use of the hierarchy country name, this test comes from the v1.0.0

test('country layer labels should only use the `country` field and not the `name`', function(t) {
var doc = {
'name': { 'default': 'source country name' },
'layer': 'country',
'country_a': ['country code'],
'country': ['hierarchy country name']
};
t.equal(generator(doc),'hierarchy country name');
t.end();
});

In my refactoring, I'm trying to use the name of the object instead of the hierarchy, even if its a coarse layer.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.