Giter VIP home page Giter VIP logo

pytsetlinmachine's Introduction

pyTsetlinMachine

Implementation of the Tsetlin Machine (https://arxiv.org/abs/1804.01508), Convolutional Tsetlin Machine (https://arxiv.org/abs/1905.09688) and Regression Tsetlin Machine (https://arxiv.org/abs/1905.04206, https://link.springer.com/chapter/10.1007/978-3-030-30244-3_23), with support for continuous features (https://arxiv.org/abs/1905.04199, https://link.springer.com/chapter/10.1007%2F978-3-030-22999-3_49).

Installation

pip install pyTsetlinMachine

Tutorials

Examples

Multiclass Demo

Code: NoisyXORDemo.py

from pyTsetlinMachine.tm import MultiClassTsetlinMachine
import numpy as np 

train_data = np.loadtxt("NoisyXORTrainingData.txt")
X_train = train_data[:,0:-1]
Y_train = train_data[:,-1]

test_data = np.loadtxt("NoisyXORTestData.txt")
X_test = test_data[:,0:-1]
Y_test = test_data[:,-1]

tm = MultiClassTsetlinMachine(10, 15, 3.9, boost_true_positive_feedback=0)

tm.fit(X_train, Y_train, epochs=200)

print("Accuracy:", 100*(tm.predict(X_test) == Y_test).mean())

print("Prediction: x1 = 1, x2 = 0, ... -> y = %d" % (tm.predict(np.array([[1,0,1,0,1,0,1,1,1,1,0,0]]))))
print("Prediction: x1 = 0, x2 = 1, ... -> y = %d" % (tm.predict(np.array([[0,1,1,0,1,0,1,1,1,1,0,0]]))))
print("Prediction: x1 = 0, x2 = 0, ... -> y = %d" % (tm.predict(np.array([[0,0,1,0,1,0,1,1,1,1,0,0]]))))
print("Prediction: x1 = 1, x2 = 1, ... -> y = %d" % (tm.predict(np.array([[1,1,1,0,1,0,1,1,1,1,0,0]]))))

Output

python3 ./NoisyXORDemo.py 

Accuracy: 100.00%

Prediction: x1 = 1, x2 = 0, ... -> y = 1
Prediction: x1 = 0, x2 = 1, ... -> y = 1
Prediction: x1 = 0, x2 = 0, ... -> y = 0
Prediction: x1 = 1, x2 = 1, ... -> y = 0

2D Convolution Demo

Code: 2DNoisyXORDemo.py

from pyTsetlinMachine.tm import MultiClassConvolutionalTsetlinMachine2D
import numpy as np 

train_data = np.loadtxt("2DNoisyXORTrainingData.txt")
X_train = train_data[:,0:-1].reshape(train_data.shape[0], 4, 4)
Y_train = train_data[:,-1]

test_data = np.loadtxt("2DNoisyXORTestData.txt")
X_test = test_data[:,0:-1].reshape(test_data.shape[0], 4, 4)
Y_test = test_data[:,-1]

ctm = MultiClassConvolutionalTsetlinMachine2D(40, 60, 3.9, (2, 2), boost_true_positive_feedback=0)

ctm.fit(X_train, Y_train, epochs=5000)

print("Accuracy:", 100*(ctm.predict(X_test) == Y_test).mean())

Xi = np.array([[[0,1,1,0],
		[1,1,0,1],
		[1,0,1,1],
		[0,0,0,1]]])

print("\nInput Image:\n")
print(Xi)
print("\nPrediction: %d" % (ctm.predict(Xi)))

Output

python3 ./2DNoisyXORDemo.py 

Accuracy: 99.97%

Input Image:

[[0 1 1 0]
 [1 1 0 1]
 [1 0 1 1]
 [0 0 0 1]]

Prediction: 1

Continuous Input Demo

Code: BreastCancerDemo.py

from pyTsetlinMachine.tm import MultiClassTsetlinMachine
from pyTsetlinMachine.tools import Binarizer
import numpy as np

from sklearn import datasets
from sklearn.model_selection import train_test_split

breast_cancer = datasets.load_breast_cancer()
X = breast_cancer.data
Y = breast_cancer.target

b = Binarizer(max_bits_per_feature = 10)
b.fit(X)
X_transformed = b.transform(X)

tm = MultiClassTsetlinMachine(800, 40, 5.0)

print("\nMean accuracy over 100 runs:\n")
tm_results = np.empty(0)
for i in range(100):
	X_train, X_test, Y_train, Y_test = train_test_split(X_transformed, Y, test_size=0.2)

	tm.fit(X_train, Y_train, epochs=25)
	tm_results = np.append(tm_results, np.array(100*(tm.predict(X_test) == Y_test).mean()))
	print("#%d Average Accuracy: %.2f%% +/- %.2f" % (i+1, tm_results.mean(), 1.96*tm_results.std()/np.sqrt(i+1)))

Output

python3 ./BreastCancerDemo.py 

Mean accuracy over 100 runs:

#1 Average Accuracy: 97.37% +/- 0.00
#2 Average Accuracy: 97.37% +/- 0.00
...
#99 Average Accuracy: 97.52% +/- 0.29
#100 Average Accuracy: 97.54% +/- 0.29

MNIST Demo

Code: MNISTDemo.py

from pyTsetlinMachine.tm import MultiClassTsetlinMachine
import numpy as np
from time import time

from keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

X_train = np.where(X_train.reshape((X_train.shape[0], 28*28)) > 75, 1, 0) 
X_test = np.where(X_test.reshape((X_test.shape[0], 28*28)) > 75, 1, 0) 

tm = MultiClassTsetlinMachine(2000, 50, 10.0)

print("\nAccuracy over 400 epochs:\n")
for i in range(400):
	start = time()
	tm.fit(X_train, Y_train, epochs=1, incremental=True)
	stop = time()
	result = 100*(tm.predict(X_test) == Y_test).mean()
	print("#%d Accuracy: %.2f%% (%.2fs)" % (i+1, result, stop-start))

Output

python3 ./MNISTDemo.py 

Accuracy over 200 epochs:

#1 Accuracy: 94.57% (54.51s)
#2 Accuracy: 95.92% (44.28s)
#3 Accuracy: 96.28% (39.69s)
...

#198 Accuracy: 98.17% (29.46s)
#199 Accuracy: 98.19% (29.49s)
#200 Accuracy: 98.14% (29.49s)

MNIST 2D Convolution Demo

Code: MNISTDemo2DConvolution.py

from pyTsetlinMachine.tm import MultiClassConvolutionalTsetlinMachine2D
import numpy as np
from time import time

from keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

X_train = np.where(X_train >= 75, 1, 0) 
X_test = np.where(X_test >= 75, 1, 0) 

tm = MultiClassConvolutionalTsetlinMachine2D(8000, 200, 10.0, (10, 10))

print("\nAccuracy over 25 epochs:\n")
for i in range(25):
	start = time()
	tm.fit(X_train, Y_train, epochs=1, incremental=True)
	stop = time()
	
	result = 100*(tm.predict(X_test) == Y_test).mean()
	
	print("#%d Accuracy: %.2f%% (%.2fs)" % (i+1, result, stop-start))

Output

python3 ./MNISTDemo2DConvolution.py 

Accuracy over 40 epochs:

#1 Accuracy: 97.81% (1383.61s)
#2 Accuracy: 98.42% (1383.16s)
#3 Accuracy: 98.52% (1387.48s)
...

#38 Accuracy: 99.11% (1381.82s)
#39 Accuracy: 99.07% (1225.61s)
#40 Accuracy: 99.13% (1379.31s)

IMDb Text Categorization Demo

Code: IMDbTextCategorizationDemo.py

import numpy as np
import keras
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from keras.datasets import imdb
from pyTsetlinMachine.tm import MultiClassTsetlinMachine
from time import time

MAX_NGRAM = 2

NUM_WORDS=5000
INDEX_FROM=2 

FEATURES=5000

print("Downloading dataset...")

# Save np.load
np_load_old = np.load

# Modify the default parameters of np.load
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)

train,test = keras.datasets.imdb.load_data(num_words=NUM_WORDS, index_from=INDEX_FROM)

# Restore np.load for future normal usage
np.load = np_load_old

train_x,train_y = train
test_x,test_y = test

word_to_id = keras.datasets.imdb.get_word_index()
word_to_id = {k:(v+INDEX_FROM) for k,v in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2

print("Producing bit representation...")

# Produce N-grams

id_to_word = {value:key for key,value in word_to_id.items()}

vocabulary = {}
for i in range(train_y.shape[0]):
	terms = []
	for word_id in train_x[i]:
		terms.append(id_to_word[word_id])
	
	for N in range(1,MAX_NGRAM+1):
		grams = [terms[j:j+N] for j in range(len(terms)-N+1)]
		for gram in grams:
			phrase = " ".join(gram)
			
			if phrase in vocabulary:
				vocabulary[phrase] += 1
			else:
				vocabulary[phrase] = 1

# Assign a bit position to each N-gram (minimum frequency 10) 

phrase_bit_nr = {}
bit_nr_phrase = {}
bit_nr = 0
for phrase in vocabulary.keys():
	if vocabulary[phrase] < 10:
		continue

	phrase_bit_nr[phrase] = bit_nr
	bit_nr_phrase[bit_nr] = phrase
	bit_nr += 1

# Create bit representation

X_train = np.zeros((train_y.shape[0], len(phrase_bit_nr)), dtype=np.uint32)
Y_train = np.zeros(train_y.shape[0], dtype=np.uint32)
for i in range(train_y.shape[0]):
	terms = []
	for word_id in train_x[i]:
		terms.append(id_to_word[word_id])

	for N in range(1,MAX_NGRAM+1):
		grams = [terms[j:j+N] for j in range(len(terms)-N+1)]
		for gram in grams:
			phrase = " ".join(gram)
			if phrase in phrase_bit_nr:
				X_train[i,phrase_bit_nr[phrase]] = 1

	Y_train[i] = train_y[i]

X_test = np.zeros((test_y.shape[0], len(phrase_bit_nr)), dtype=np.uint32)
Y_test = np.zeros(test_y.shape[0], dtype=np.uint32)

for i in range(test_y.shape[0]):
	terms = []
	for word_id in test_x[i]:
		terms.append(id_to_word[word_id])

	for N in range(1,MAX_NGRAM+1):
		grams = [terms[j:j+N] for j in range(len(terms)-N+1)]
		for gram in grams:
			phrase = " ".join(gram)
			if phrase in phrase_bit_nr:
				X_test[i,phrase_bit_nr[phrase]] = 1				

	Y_test[i] = test_y[i]

print("Selecting features...")

SKB = SelectKBest(chi2, k=FEATURES)
SKB.fit(X_train, Y_train)

selected_features = SKB.get_support(indices=True)
X_train = SKB.transform(X_train)
X_test = SKB.transform(X_test)

tm = MultiClassTsetlinMachine(10000, 80, 27.0)

print("\nAccuracy over 25 epochs:\n")
for i in range(25):
	start = time()
	tm.fit(X_train, Y_train, epochs=1, incremental=True)
	stop = time()
	result = 100*(tm.predict(X_test) == Y_test).mean()
	print("#%d Accuracy: %.2f%% (%.2fs)" % (i+1, result, stop-start))

Output:

python ./IMDbTextCategorizationDemo.py

Downloading dataset...
Producing bit representation...
Selecting features...

Accuracy over 25 epochs:

#1 Accuracy: 87.10% (1129.02s)
#2 Accuracy: 87.72% (1136.42s)
#3 Accuracy: 88.08% (1076.66s)
...

#23 Accuracy: 89.36% (733.84s)
#24 Accuracy: 89.34% (736.17s)
#25 Accuracy: 89.36% (826.29s)

Regression Demo

Code: RegressionDemo.py

from pyTsetlinMachine.tm import RegressionTsetlinMachine
from pyTsetlinMachine.tools import Binarizer
import numpy as np
from time import time

from sklearn import datasets
from sklearn.model_selection import train_test_split

california_housing = datasets.fetch_california_housing()
X = california_housing.data
Y = california_housing.target

b = Binarizer(max_bits_per_feature = 10)
b.fit(X)
X_transformed = b.transform(X)

tm = RegressionTsetlinMachine(4000, 2000, 2.75)

print("\nRMSD over 25 runs:\n")
tm_results = np.empty(0)
for i in range(25):
	X_train, X_test, Y_train, Y_test = train_test_split(X_transformed, Y)

	start = time()
	tm.fit(X_train, Y_train, epochs=30)
	stop = time()
	tm_results = np.append(tm_results, np.sqrt(((tm.predict(X_test) - Y_test)**2).mean()))

	print("#%d RMSD: %.2f +/- %.2f (%.2fs)" % (i+1, tm_results.mean(), 1.96*tm_results.std()/np.sqrt(i+1), stop-start))

Output

python3 ./RegressionDemo.py 

RMSD over 25 runs:

#1 RMSD: 0.62 +/- 0.00 (56.62s)
#2 RMSD: 0.60 +/- 0.02 (58.57s)
...

#24 RMSD: 0.61 +/- 0.00 (60.20s)
#25 RMSD: 0.61 +/- 0.00 (59.68s)

Further Work

  • Multilayer Tsetlin Machine
  • Recurrent Tsetlin Machine
  • GPU support
  • Multi-threading
  • Optimize convolution code
  • More extensive hyper-parameter search for the demos

Requirements

Citation

@article{berge2019, 
  author={Geir Thore {Berge} and Ole-Christoffer {Granmo} and Tor Oddbjørn {Tveit} and Morten {Goodwin} and Lei {Jiao} and Bernt Viggo {Matheussen}}, 
  journal={IEEE Access}, 
  title="{Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications}",
  volume={7},
  pages={115134-115146}, 
  year={2019}, 
  doi={10.1109/ACCESS.2019.2935416}, 
  ISSN={2169-3536}
}
@article{granmo2019convtsetlin,
  author = {{Granmo}, Ole-Christoffer and {Glimsdal}, Sondre and {Jiao}, Lei and {Goodwin}, Morten and {Omlin}, Christian W. and {Berge}, Geir Thore},
  title = "{The Convolutional Tsetlin Machine}",
  journal = {arXiv preprint arXiv:1905.09688}, year = {2019}
}
@InProceedings{abeyrathna2019regressiontsetlin,
  author = {{Abeyrathna}, Kuruge Darshana and {Granmo}, Ole-Christoffer and {Jiao}, Lei and {Goodwin}, Morten},
  title = "{The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems}",
  editor="Moura Oliveira, Paulo and Novais, Paulo and Reis, Lu{\'i}s Paulo ",
  booktitle="Progress in Artificial Intelligence", year="2019",
  publisher="Springer International Publishing",
  pages="268--280"
}
@InProceedings{abeyrathna2019continuousinput,
  author = {{Abeyrathna}, Kuruge Darshana and {Granmo}, Ole-Christoffer and {Zhang}, Xuan and {Goodwin}, Morten},
  title = "{A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks}",
  booktitle = "{Advances and Trends in Artificial Intelligence. From Theory to Practice}", year = "2019",
  editor = "Wotawa, Franz and Friedrich, Gerhard and Pill, Ingo and Koitz-Hristov, Roxane and Ali, Moonis",
  publisher = "Springer International Publishing",
  pages = "564--578"
}
@article{granmo2018tsetlin,
  author = {{Granmo}, Ole-Christoffer},
  title = "{The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic}",
  journal = {arXiv preprint arXiv:1804.01508}, year = {2018}
}

Licence

Copyright (c) 2019 Ole-Christoffer Granmo

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pytsetlinmachine's People

Contributors

olegranmo avatar

Watchers

James Cloos avatar paper2code - bot avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.