Giter VIP home page Giter VIP logo

stdlib-js / blas-base-sdot Goto Github PK

View Code? Open in Web Editor NEW
1.0 3.0 0.0 753 KB

Calculate the dot product of two single-precision floating-point vectors.

Home Page: https://github.com/stdlib-js/stdlib

License: Apache License 2.0

JavaScript 29.35% C 27.27% Fortran 13.64% Python 29.73%
nodejs javascript stdlib node node-js mathematics math blas level-1 sdot dot product dot-product scalar scalar-product inner inner-product linear algebra subroutines

blas-base-sdot's Introduction

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

sdot

NPM version Build Status Coverage Status

Calculate the dot product of two single-precision floating-point vectors.

The dot product (or scalar product) is defined as

$$\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}$$

Installation

npm install @stdlib/blas-base-sdot

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var sdot = require( '@stdlib/blas-base-sdot' );

sdot( N, x, strideX, y, strideY )

Calculates the dot product of vectors x and y.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );

var z = sdot( x.length, x, 1, y, 1 );
// returns -5.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float32Array.
  • strideX: index increment for x.
  • y: input Float32Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to calculate the dot product of every other value in x and the first N elements of y in reverse order,

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );

var z = sdot( 3, x, 2, y, -1 );
// returns 9.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array-float32' );

// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

var z = sdot( 3, x1, -2, y1, 1 );
// returns 128.0

sdot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Calculates the dot product of x and y using alternative indexing semantics.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );

var z = sdot.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns -5.0

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in x starting from the second value with the last 3 elements in y in reverse order

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

var z = sdot.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// returns 128.0

Notes

  • If N <= 0, both functions return 0.0.
  • sdot() corresponds to the BLAS level 1 function sdot.

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var sdot = require( '@stdlib/blas-base-sdot' );

var opts = {
    'dtype': 'float32'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );

var y = discreteUniform( x.length, 0, 10, opts );
console.log( y );

var out = sdot( x.length, x, 1, y, -1 );
console.log( out );

See Also

  • @stdlib/blas-base/ddot: calculate the dot product of two double-precision floating-point vectors.
  • @stdlib/blas-base/dsdot: calculate the dot product with extended accumulation and result of two single-precision floating-point vectors.
  • @stdlib/blas-base/sdsdot: calculate the dot product of two single-precision floating-point vectors with extended accumulation.
  • @stdlib/blas-sdot: calculate the dot product of two single-precision floating-point vectors.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

blas-base-sdot's People

Contributors

stdlib-bot avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.