Giter VIP home page Giter VIP logo

stdlib-js / strided-base-dmap2 Goto Github PK

View Code? Open in Web Editor NEW
2.0 3.0 0.0 455 KB

Apply a binary function accepting and returning double-precision floating-point numbers to corresponding elements in two double-precision floating-point strided input arrays and assign each result to an element in a double-precision floating-point strided output array.

Home Page: https://github.com/stdlib-js/stdlib

License: Apache License 2.0

JavaScript 65.32% C 34.68%
nodejs javascript stdlib node node-js strided base array ndarray binary

strided-base-dmap2's Introduction

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dmap2

NPM version Build Status Coverage Status

Apply a binary function to double-precision floating-point strided input arrays and assign results to a double-precision floating-point strided output array.

Installation

npm install @stdlib/strided-base-dmap2

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var dmap2 = require( '@stdlib/strided-base-dmap2' );

dmap2( N, x, strideX, y, strideY, z, strideZ, fcn )

Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array.

var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var y = new Float64Array( [ 2.0, 1.0, 3.0, -2.0, 4.0, 1.0, -1.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

dmap2( x.length, x, 1, y, 1, z, 1, add );
// z => <Float64Array>[ 0.0, 2.0, 6.0, -7.0, 8.0, 1.0, -2.0, 0.0 ]

The function accepts the following arguments:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: input Float64Array.
  • strideY: index increment for y.
  • z: output Float64Array.
  • strideZ: index increment for z.
  • fcn: function to apply.

The N and stride parameters determine which strided array elements are accessed at runtime. For example, to index every other value in x and to index the first N elements of y in reverse order,

var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );

var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

dmap2( 3, x, 2, y, -1, z, 1, add );
// z => <Float64Array>[ 1.0, -2.0, -4.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );

// Initial arrays...
var x0 = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y0 = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var z1 = new Float64Array( z0.buffer, z0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

dmap2( 3, x1, -2, y1, 1, z1, 1, add );
// z0 => <Float64Array>[ 0.0, 0.0, -4.0, -1.0, 1.0, 0.0 ]

dmap2.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, z, strideZ, offsetZ, fcn )

Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );

var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

dmap2.ndarray( x.length, x, 1, 0, y, 1, 0, z, 1, 0, add );
// z => <Float64Array>[ 0.0, -1.0, -1.0, -2.0, -2.0 ]

The function accepts the following additional arguments:

  • offsetX: starting index for x.
  • offsetY: starting index for y.
  • offsetZ: starting index for z.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y in reverse order,

var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );

var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

dmap2.ndarray( 3, x, 2, 1, y, -1, y.length-1, z, 1, 3, add );
// z => <Float64Array>[ 0.0, 0.0, 0.0, 1.0, -1.0, -4.0 ]

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var dmap2 = require( '@stdlib/strided-base-dmap2' );

var x = filledarrayBy( 10, 'float64', discreteUniform( -100, 100 ) );
console.log( x );

var y = filledarrayBy( x.length, 'float64', discreteUniform( -100, 100 ) );
console.log( y );

var z = new Float64Array( x.length );
console.log( z );

dmap2.ndarray( x.length, x, 1, 0, y, -1, y.length-1, z, 1, 0, add );
console.log( z );

C APIs

Usage

#include "stdlib/strided/base/dmap2.h"

stdlib_strided_dmap2( N, *X, strideX, *Y, strideY, *Z, strideZ, fcn )

Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array.

#include <stdint.h>

static double add( const double x, const double y ) {
    return x + y;
}

double X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
double Y[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
double Z[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

int64_t N = 6;

stdlib_strided_dmap2( N, X, 1, Y, 1, Z, 1, add );

The function accepts the following arguments:

  • N: [in] int64_t number of indexed elements.
  • X: [in] double* input array.
  • strideX [in] int64_t index increment for X.
  • Y: [in] double* input array.
  • strideY: [in] int64_t index increment for Y.
  • Z: [out] double* output array.
  • strideZ: [in] int64_t index increment for Z.
  • fcn: [in] double (*fcn)( double, double ) binary function to apply.
void stdlib_strided_dmap2( const int64_t N, const double *X, const int64_t strideX, const double *Y, const int64_t strideY, double *Z, const int64_t strideZ, double (*fcn)( double, double ) );

Examples

#include "stdlib/strided/base/dmap2.h"
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>

// Define a callback:
static double add( const double x, const double y ) {
    return x + y;
}

int main( void ) {
    // Create input strided arrays:
    double X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
    double Y[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };

    // Create an output strided array:
    double Z[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

    // Specify the number of elements:
    int64_t N = 6;

    // Define the strides:
    int64_t strideX = 1;
    int64_t strideY = -1;
    int64_t strideZ = 1;

    // Apply the callback:
    stdlib_strided_dmap2( N, X, strideX, Y, strideY, Z, strideZ, add );

    // Print the results:
    for ( int64_t i = 0; i < N; i++ ) {
        printf( "Z[ %"PRId64" ] = %lf\n", i, Z[ i ] );
    }
}

See Also

  • @stdlib/strided-base/smap2: apply a binary function to single-precision floating-point strided input arrays and assign results to a single-precision floating-point strided output array.
  • @stdlib/strided-base/binary: apply a binary callback to elements in strided input arrays and assign results to elements in a strided output array.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

strided-base-dmap2's People

Contributors

stdlib-bot avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.