Giter VIP home page Giter VIP logo

orca-c's Introduction

ORCΛ

Each letter of the alphabet is an operation, lowercase letters typically operate on bang(*), uppercase letters operate on each frame. Bangs can be generated by various operations, such as E colliding with a 0, see the bang.orca example. Watch a music video of ORCΛ in action.

C Port for the ORCΛ programming environment, with a commandline interpreter.

Prerequisites

Core library: A C99 compiler (no VLAs required), plus enough libc for malloc, realloc, free, memcpy, memset, and memmove.

Command-line interpreter: The above, plus POSIX, and enough libc for the common string operations (strlen, strcmp, etc.)

Interactive terminal UI: The above, plus ncurses (or compatible curses library), and floating point support (for timing.) Optionally, PortMIDI can be used to enable direct MIDI output.

Note: the core library for running an orca virtual machine should in theory build on anything, but the project is being worked on quickly right now, so it might accidentally include something from POSIX that isn't available on Windows, for example. The header files also need some restructuring. Please open an issue or send a message on twitter if you need help building the core virtual machine for your own use, and I'll try to clean it up for you.

Your compiler must also support #pragma once, but it probably does.

Build

The build script is in bash. It should work with gcc (including the musl-gcc wrapper) and clang, and will automatically detect your compiler.

Currently known to build on macOS (gcc, clang) and Linux (gcc, musl-gcc, and clang, optionally with LLD), and Windows via cygwin or WSL (gcc or clang).

There is a fire-and-forget make wrapper around the build script.

PortMIDI is an optional dependency. It can be enabled by adding the option --portmidi when running the tool build script.

Make

make debug      # debugging build, binary placed at build/debug/orca
make release    # optimized build, binary placed at build/release/orca
make clean      # removes build/

Build Script

Run ./tool --help to see usage info. Examples:

./tool -c clang-7 --portmidi build release orca
    # Build the terminal ui with a compiler named
    # clang-7, with optimizations enabled, and with
    # PortMIDI enabled for MIDI output.
    # Binary placed at build/release/orca

./tool build debug cli
    # Debug build of the headless CLI interpreter.
    # Binary placed at build/debug/cli

./tool clean
    # Same as make clean, removes build/

Run

Interactive terminal UI

Usage: orca [options] [file]

General options:
    --margins <number>     Set cosmetic margins.
                           Default: 2
    --undo-limit <number>  Set the maximum number of undo steps.
                           If you plan to work with large files,
                           set this to a low number.
                           Default: 100
    -h or --help           Print this message and exit.

OSC/MIDI options:
    --strict-timing
        Reduce the timing jitter of outgoing MIDI and OSC messages.
        Uses more CPU time.

    --osc-server <address>
        Hostname or IP address to send OSC messages to.
        Default: loopback (this machine)

    --osc-port <number or service name>
        UDP port (or service name) to send OSC messages to.
        This option must be set for OSC output to be enabled.
        Default: none

    --osc-midi-bidule <path>
        Set MIDI to be sent via OSC formatted for Plogue Bidule.
        The path argument is the path of the Plogue OSC MIDI device.
        Example: /OSC_MIDI_0/MIDI

Additional options are available if orca is built with --portmidi:

    --portmidi-list-devices
        List the MIDI output devices available through PortMIDI,
        along with each associated device ID number, and then exit.
        Do this to figure out which ID to use with
        --portmidi-output-device

    --portmidi-output-device <number>
        Set MIDI to be sent via PortMIDI on a specified device ID.
        Example: 1

Example: build and run orca with MIDI output

$ ./tool --portmidi build release orca           # compile orca
$ build/release/orca --portmidi-list-devices     # query for midi devices
ID: 3    Name: IAC Driver Bus
ID: 4    Name: USB MIDI Device
$ build/release/orca --portmidi-output-device 3  # run orca with midi device 3

Controls

┌ Controls ───────────────────────────────────────────┐
│           Ctrl+Q  Quit                              │
│       Arrow Keys  Move Cursor                       │
│     Ctrl+D or F1  Open Main Menu                    │
│   0-9, A-Z, a-z,  Insert Character                  │
│    !, :, =, #, *                                    │
│         Spacebar  Play/Pause                        │
│ Ctrl+Z or Ctrl+U  Undo                              │
│           Ctrl+X  Cut                               │
│           Ctrl+C  Copy                              │
│           Ctrl+V  Paste                             │
│           Ctrl+S  Save                              │
│           Ctrl+F  Frame Step Forward                │
│           Return  Append/Overwrite Mode             │
│                /  Key Trigger Mode                  │
│        ' (quote)  Rectangle Selection Mode          │
│ Shift+Arrow Keys  Adjust Rectangle Selection        │
│           Escape  Return to Normal Mode or Deselect │
│          ( and )  Resize Grid (Horizontal)          │
│          _ and +  Resize Grid (Vertical)            │
│          [ and ]  Adjust Grid Rulers (Horizontal)   │
│          { and }  Adjust Grid Rulers (Vertical)     │
│          < and >  Adjust BPM                        │
│                ?  Controls (this message)           │
└─────────────────────────────────────────────────────┘

CLI interpreter

The CLI (cli binary) reads from a file and runs the orca simulation for 1 timestep (default) or a specified number (-t option) and writes the resulting state of the grid to stdout.

cli [-t timesteps] infile

You can also make cli read from stdin:

echo -e "...\na34\n..." | cli /dev/stdin

Extras

  • Support this project through Patreon.
  • See the License file for license rights and limitations (MIT).
  • Pull Requests are welcome!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.