Giter VIP home page Giter VIP logo

3d_differencing's Introduction

NSF-1948997 NSF-1948994 NSF-1948857

Measuring change at the Earth’s surface: On-Demand vertical and 3D topographic differencing implemented in OpenTopography

Chelsea Scott: [email protected](corresponding author)

Minh Phan, Viswanath Nandigam, Christopher Crosby, Ramon Arrowsmith

A windowed implementation of the iterative closest point (ICP) algorithm is used to calculate displacement and rotation fields from topographic point clouds that span a geologic event of interest. This technique resolves surface deformation along and adjacent to active faults where other geodetic datasets commonly lack spatial resolution.

We provide two sets of codes to perform 3D ICP differencing.

https://github.com/OpenTopography/3D_Differencing/tree/master/3D_differencing_matlab This option uses Matlab scripts. The Matlab script is relatively easy to set-up, although it will take a while to complete.

https://github.com/OpenTopography/3D-Differencing/tree/master/3D_differencing_python This option uses Python and c++ functions to perform ICP differencing. The set-up is more involved than for the Matlab option, but the scripts will run much faster.

Pre- and post- earthquake topographic datasets for the M7 Kumamoto, Japan, earthquake are available here.

Pre earthquake topography: https://portal.opentopography.org/lidarDataset?opentopoID=OTLAS.052018.2444.2

Post earthquake topography: https://portal.opentopography.org/lidarDataset?opentopoID=OTLAS.052018.2444.1

More information about ICP differencing applied to earthquakes is available in these publications: Scott, C. P., Arrowsmith, J. R., Nissen, E., Lajoie, L., Maruyama, T., & Chiba, T. (2018). The M7 2016 Kumamoto, Japan, Earthquake: 3-D Deformation Along the Fault and Within the Damage Zone Constrained From Differential Lidar Topography. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2018JB015581

Scott, C., Champenois, J., Klinger, Y., Nissen, E., Maruyama, T., Chiba, T., & Arrowsmith, R. (2019). 2016 M7 Kumamoto, Japan, Earthquake Slip Field Derived From a Joint Inversion of Differential Lidar Topography, Optical Correlation, and InSAR Surface Displacements. Geophysical Research Letters. https://doi.org/10.1029/2019GL082202

3d_differencing's People

Contributors

vnandigam avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.