Giter VIP home page Giter VIP logo

sibeliaz's Introduction

SibeliaZ 1.0.0

Release date: 21st February 2019

Authors

  • Ilia Minkin (Pennsylvania State University)
  • Paul Medvedev (Pennsylvania State University)

Introduction

SibeliaZ is a whole-genome alignment and locally-coliinear blocks construction pipeline. The blocks coordinates are output in GFF format and the alignment is in MAF.

SibeliaZ was designed for the inputs consisting of multiple similar genomes, like different strains of the same species. The tool works best for the datasets with the distance from a leaf to the most recent common ancestor not exceeding 0.085 substitutions per site, or 9 PAM units.

Currently SibeliaZ does not support chromosomes in the input longer than 4294967296 bp, this will be fixed in the future releases.

Compilation and installation

To compile the code, you need the following (Linux only):

  • Git
  • CMake
  • A GCC compiler supporting C++11
  • Intel TBB library properly installed on your system. In other words, G++ should be able to find TBB libs (future releases will not depend on TBB)

Once you installed the things above, do the following:

Clone the repository https://github.com/medvedevgroup/SibeliaZ by running:

git clone https://github.com/medvedevgroup/SibeliaZ 

Go to the root directory of the project and create the "build" folder by executing

cd SibeliaZ
mkdir build

Initialize dependencies by executing

git submodule update --init --recursive

Go to the "build" directory

cd build 

Compile and install the project by running

cmake .. -DCMAKE_INSTALL_PREFIX=<path to install the binaries>
make install

The make run will produce and installs the executables of twopaco, sibeliaz-lcb, spoa and a wrapper script sibeliaz which implements the pipeline.

SibeliaZ usage

SibeliaZ takes a FASTA file as an input. The simplest way to run SibeliaZ is to enter the following command:

sibeliaz -f <memory amount in GB>  <input FASTA file>

By default, the output will be written in the directory "sibeliaz_out" in the current working directory. It will contain a GFF file "blocks_coords.gff" containing coordinates of the found blocks, and file "alignment.maf" with the actual alignment. The subdirectory "examples" contains an example of running SibeliaZ and the output it produces. SibeliaZ has several parameters that affect the accuracy and output, which are described below.

The memory amount specified by switch -f is used for memory preallocation for the initial step of the alignment pipeline as well as final global alignment. For small datasets, it at least should be several times of the input file size, for large genomes it is best to use as much memory as possible.

Output description

The output directory will contain:

  1. A GFF file with coordinates of the locally-collinear blocks. Lines that have identical id fields correspond to different copies of the same block. The file name is "blocks_coords.gff"
  2. A MAF file with the whole-genome alignment of the input. The file name is "alignment.maf".

Note: the actual alignment is produced by globally aliging the locally-colliner blocks, which is memory-hungry. It could be impossible to align certain blocks, especially if they have a lot of copies and/or long due to the aligner running out of memory, even on machines with large RAM. The output directory will have a subdirectory "blocks" that will contain FASTA files with blocks that were impossible to align. Each file correspond to a block and contains its copies. FASTA headers contain the coordinates of all copies of the block in the same format as MAF records, except that fields are separated by a semicolon.

It is possible to skip the alignment (use the -n switch) step and produce only coordinates of the blocks if the alignment is not needed for downstream analysis. In this case SibeliaZ will not produce the "alignment.maf" file and "blocks" subdirectory.

Parameters affecting accuracy

The value of k

This parameter defines the order of the de Bruijn graph being used and controls the tradeoff between the sensitivity on one hand, and speed and memory usage on the other. The parameter is set by the key

-k <an odd integer>

In general the lower the k, the slower and more sensitive the alignment is. For small datasets, like bacteria, we recommend k=15, and for mammalian-sized genomes k=25. The default is 25.

Vertices frequency threshold

Mammalian genomes contain many repeated elements that make the graph large and convoluted. To deal with this issue, SibeliaZ removes all k-mers with frequence more than a threshold, which is controlled by the option:

-a <integer>

We recommend to set it to the twice of the maximum number of copies a homologous block in the input genomes has. For example, if the largest gene family of the input genomes has N members, set -a to at least N * 2. However, increasing this value may significantly slow down the computation. The default value is 150.

Bubble size threshold

SibeliaZ analyzes the graph by looking for long chains of bubbles in it. A bubble is a pair of paths having the same endpoints. A long chain of bubbles is likely to be generated by a pair of homologous sequences, which SibeliaZ looks for. However, if the paths between endpoints of a bubble is too long, it may arise through the spurious similarity. To avoid this, SibeliaZ discards bubbles with paths longer than the threshold -b, which can be set by:

-b <integer>

The default value of -b is 200. Increasing value may increase recall of divergent sequences, but if -b is too high, it will decrease accuracy as well.

Locally-collinear block size

SibelaZ only output blocks longer than a specified threshold, which is set by

-m <integer>

The default value is 50. Warning: increasing this parameter may significantly slow down the computation.

Technical parameters

Skipping the alignment

To skip the alignment and only output coordinates of the blocks, use the switch

-n

Threads number

The maximum number of thread for SibeliaZ to use. This parameter is set by

-t <integer>

By default SibeliaZ tries to use as much threads as possible. You can limit this number by using the above switch. Note that different stages of the pipeline have different scalabilities. TwoPaCo will not use more than 16 threads, graph analyzer sibeliaz-lcb will not use more than 4, while the global aligner will use as much as possible.

Memory allocation

Some prgorams in the pipeline require an amount of memory specified beforehand. For example, the graph constructor TwoPaCo uses it for Bloom filter, and the global aligner requires a memory limit to be set to work correctly. This can be set using the option:

-f <memory amount in GB>

If SibeliaZ runs out of memory, try increasing this amount, see "Troubleshooting" section for more details.

Output directory

The directory for the output files can be set by the argument

-o <directory>

The default is "sibeliaz_out" in the current working directory.

A note about the repeat masking

SibeliaZ and TwoPaCo currently do not recognize soft-masked characters (i.e. using lowercase characters), so please convert soft-masked repeats to hard-maksed ones (with Ns) if you would like to mask the repeats explicitly. However, it is not necessary as SibeliaZ uses the abundance parameter -a to filter out high-copy repeats.

Difference between Sibelia and SibeliaZ

SibeliaZ is the future developement of synteny-finder Sibelia. The key difference is that old Sibelia was designed to produce long synteny blocks, while SibeliaZ produces shorter locally-collinear blocks or LCBs. Output of SibeliaZ is very similar to Sibelia's when it is run in a single stage. At the same time, SibeliaZ is much faster and can handle longer genomes.

Troubleshooting

It could be that SibeliaZ runs out of memory on large inputs. Possible reasons include:

  • TwoPaCo having the Bloom filter too small. To increase its size, use the -f switch

  • SibeliaZ-LCB running out of memory. You can try to reduce the abundance parameter -a to prune the internal data structure and reduce its size.

Citation

If you use SibeliaZ in your research, please cite:

Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ
Ilia Minkin, Paul Medvedev
bioRxiv 548123; doi: https://doi.org/10.1101/548123

License

See LICENSE.txt

Contacts

E-mail your feedback at [email protected].

Datasets used of analyses in the paper

See: https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt

sibeliaz's People

Contributors

iminkin avatar

Stargazers

Panqiao Wang avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.