Giter VIP home page Giter VIP logo

pytorch-meta's Introduction

Torchmeta

PyPI Build Status Documentation

A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning benchmarks, fully compatible with both torchvision and PyTorch's DataLoader.

Features

  • A unified interface for both few-shot classification and regression problems, to allow easy benchmarking on multiple problems and reproducibility.
  • Helper functions for some popular problems, with default arguments from the literature.
  • An thin extension of PyTorch's Module, called MetaModule, that simplifies the creation of certain meta-learning models (e.g. gradient based meta-learning methods). See the MAML example for an example using MetaModule.

Datasets available

Installation

You can install Torchmeta either using Python's package manager pip, or from source. To avoid any conflict with your existing Python setup, it is suggested to work in a virtual environment with virtualenv. To install virtualenv:

pip install --upgrade virtualenv
virtualenv venv
source venv/bin/activate

Requirements

  • Python 3.5 or above
  • PyTorch 1.3
  • Torchvision 0.4

Using pip

This is the recommended way to install Torchmeta:

pip install torchmeta

From source

You can also install Torchmeta from source. This is recommended if you want to contribute to Torchmeta.

git clone https://github.com/tristandeleu/pytorch-meta.git
cd pytorch-meta
python setup.py install

Example

Minimal example

This minimal example below shows how to create a dataloader for the 5-shot 5-way Omniglot dataset with Torchmeta. The dataloader loads a batch of randomly generated tasks, and all the samples are concatenated into a single tensor. For more examples, check the examples folder.

from torchmeta.datasets.helpers import omniglot
from torchmeta.utils.data import BatchMetaDataLoader

dataset = omniglot("data", ways=5, shots=5, test_shots=15, meta_train=True, download=True)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

for batch in dataloader:
    train_inputs, train_targets = batch["train"]
    print('Train inputs shape: {0}'.format(train_inputs.shape))    # (16, 25, 1, 28, 28)
    print('Train targets shape: {0}'.format(train_targets.shape))  # (16, 25)

    test_inputs, test_targets = batch["test"]
    print('Test inputs shape: {0}'.format(test_inputs.shape))      # (16, 75, 1, 28, 28)
    print('Test targets shape: {0}'.format(test_targets.shape))    # (16, 75)

Advanced example

Helper functions are only avaiable for some of the datasets available. However, all of them are available through the unified interface provided by Torchmeta. The variable dataset defined above is equivalent to the following

from torchmeta.datasets import Omniglot
from torchmeta.transforms import Categorical, ClassSplitter, Rotation
from torchvision.transforms import Compose, Resize, ToTensor
from torchmeta.utils.data import BatchMetaDataLoader

dataset = Omniglot("data",
                   # Number of ways
                   num_classes_per_task=5,
                   # Resize the images to 28x28 and converts them to PyTorch tensors (from Torchvision)
                   transform=Compose([Resize(28), ToTensor()]),
                   # Transform the labels to integers (e.g. ("Glagolitic/character01", "Sanskrit/character14", ...) to (0, 1, ...))
                   target_transform=Categorical(num_classes=5),
                   # Creates new virtual classes with rotated versions of the images (from Santoro et al., 2016)
                   class_augmentations=[Rotation([90, 180, 270])],
                   meta_train=True,
                   download=True)
dataset = ClassSplitter(dataset, shuffle=True, num_train_per_class=5, num_test_per_class=15)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

Note that the dataloader, receiving the dataset, remains the same.

Citation

Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio. Torchmeta: A Meta-Learning library for PyTorch, 2019 [ArXiv]

If you want to cite Torchmeta, use the following Bibtex entry:

@misc{deleu2019torchmeta,
  title={{Torchmeta: A Meta-Learning library for PyTorch}},
  author={Deleu, Tristan and W\"urfl, Tobias and Samiei, Mandana and Cohen, Joseph Paul and Bengio, Yoshua},
  year={2019},
  url={https://arxiv.org/abs/1909.06576},
  note={Available at: https://github.com/tristandeleu/pytorch-meta}
}

pytorch-meta's People

Contributors

tristandeleu avatar

Watchers

James Cloos avatar paper2code - bot avatar

Forkers

dasolhwang

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.