Giter VIP home page Giter VIP logo

vplanet's Introduction

VPLanet: The Virtual Planet Simulator

The Second VPLanet Workshop will take place 13-14 Sep 2022! Register here by Sep. 9th to participate!




ascl:1811.017

Overview

VPLanet is software to simulate planetary system evolution, with a focus on habitability. Physical models, typically consisting of ordinary differential equations, are coupled together to simulate evolution, from planetary cores to passing stars, for the age of a system. We strive for full transparency and reproducibility in our software, and this repository contains 1) the source code, 2) extensive documentation, 3) scripts and files to generate published figures and perform parameter sweeps, and 4) scripts to validate the current release. We can't claim we found life beyond the Earth with closed-source or unreliable software!

To get started, ensure you have clang/gcc installed and follow the Installation Guide. To stay up to date on this repository, follow it on twitter.

Modules

VPLanet currently consists of 13 functioning "modules," each containing a set of equations that simulates a specifc physical process:

AtmEsc: Roche lobe overflow and thermal escape (energy-limited and radiation-recombination-limited) of an atmosphere, including water photolyzation, hydrogen escape, oxygen escape, and oxygen build-up.

Binary: Orbital evolution of a single circumbinary planet.

DistOrb: 2nd and 4th order semi-analytic models of orbital evolution outside of resonance.

DistRot: Evolution of a world's rotational axis due to orbital evolution and the stellar torque.

EqTide: Tidal evolution in the equilibrium tide framework.

Flare: Flare frequency distribution and flare XUV luminosity evolution in low-mass stars.

GalHabit: Evolution of a wide orbit due to the galactic tide and impulses from passing stars (including radial migration).

MagmOc: Thermal and geochemical evolution of a magma ocean.

POISE: Energy balance climate model including dynamic ice sheets and lithospheric compression/rebound.

RadHeat: Radiogenic heating in a world's core, mantle, and crust.

SpiNBody: N-body integrator for the evolution of a system of massive particles.

Stellar: Evolution of a star's bolometeric and XUV luminosity, temperature, radius, and mass concentration. Also includes magnetic braking and stellar wind spin-down.

ThermInt: Thermal interior evolution, including magnetic fields, for planets undergoing plate tectonics or stagnant lid evolution.

Many of these modules can be combined together to simulate numerous phenomena and feedback loops in planetary systems.

Resources

The examples/ directory contains input files and scripts for generating the figures in Barnes et al. (2020) and subsequent publications. The "examples" badge shows if all the examples can be built with the most recent version. The Manual/ directory contains the pdf of Barnes et al. (2020), which describes the physics of the first 11 modules, validates the software against observations and/or past results, and uses figures from the examples/ directory.

An ecosystem of support software is also publicly available. VPLot is both a command line tool to quickly plot the evolution of a single integration, and also includes matplotlib functions to generate publication-worthy figures. The VSPACE script generates input files for a parameter space sweep, which can then be performed on an arbitrary number of cores with MultiPlanet. For large parameter sweeps, an enormous amount of data can be generated, which can slow analyses. To overcome this barrier, the BigPlanet code can both compress datasets into HDF5 format, including statistics of an integration, and tools to faciliate plotting. These three scripts can be executed from he command line to seamlessly perform parameter sweeps. These Python scripts are optimized for anaconda distributions versions 3.5-3.9. The "wheels" badge indicates if you can download and install the executables with pip for these Python distributions.

Code Integrity

Behind the scenes, the VPLanet team maintains code integrity through continuous integration, in which numerous scientific and numerical tests are validated at every commit. Check the "build" badge above for the current status. See the tests/ directory for the validation checks that the current build passes. The "coverage" badge shows the percentage of the code (by line number) that is currently tested by Codecov at every commit. Additionally, we use valgrind and addresssanitizer to periodically search for memory issues like use of uninitialized memory, accessing memory beyond array bounds, etc. The "memcheck" badge shows the current status of the main branch, either clean (no errors) or dirty. If dirty, check the Issues for more information about the current status -- most errors are not serious. We are committed to maintaining a stable tool for scientists to analyze any planetary system.

Community

VPLanet is a community project. We're happy to take pull requests; if you want to create one, please issue it to the dev branch. The documentation includes tutorials on adding new features and modules. It's a platform for planetary science that can grow exponentially, either by adding new physics or by adding competing models for clean comparisons.

A list of additional GitHub repositories with VPLanet examples can be found here.

If you believe you have encountered a bug, please raise an issue using the Issues tab at the top of this page.

If you'd like to stay up to date on VPLanet by joining the e-mail list, please send a request to Rory Barnes, [email protected]. You can also follow VPLanet on twitter: @VPLanetCode.

Acknowledgments

If you use this code to generate results used in any publication or conference contribution, please cite Barnes, R. et al. (2020), PASP, 132, 24502.

VPLanet development has been supported by NASA grants NNA13AA93A, NNX15AN35G, 80NSSC17K048, 13-13NAI7_0024, and 80NSSC20K0229. We also acknowledge support from the University of Washington and the Carnegie Institute for Science.

Enjoy!

© 2018-2021 The VPLanet Team.

vplanet's People

Contributors

rorybarnes avatar rodluger avatar caitlyn-wilhelm avatar deitrr avatar peteredriscoll avatar smotherh avatar lauraamaral avatar pbfeu avatar trquinn avatar dm1681 avatar rudyg3 avatar saturnaxis avatar decaelus avatar cianwilson avatar gekaremi avatar jrenaud90 avatar

Stargazers

Wynonah Rebutar avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.