Giter VIP home page Giter VIP logo

stacked_bidirectional_unidirectional_lstm's Introduction

Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network

For Network-wide Traffic Speed Prediction

Prologue

Normally, we use RNN to characterize the forward dependency of time series data. While, bi-directional RNNs can capture both forward and backward dependencies in time series data. It has been shown that stacked (multi-layer) RNNs/LSTMs work better than one-layer RNN/LSTM in many NLP related applications. It is good to try a combination of bi-directional RNNs and uni-directional RNNs. We find that a neural network with multiple stacked bi-directional LSTMs followed by an uni-directiaonl LSTM works better.

New Progress

We are designing several internal structures in the LSTM cell to overcome the missing values problem in time series data (replacing the masking layer in the following figure), and to make the model to be suitable for graph-structured data.

The original model is implemented by Keras. A newly improved version implemented by PyTorch will soon be released.

Environment

  • Python 3.6.1
  • Keras 2.1.5
  • PyTorch 0.3.0

For more detailed information about the model, you can refer to our paper, referenced at the bottom.

Model Structure

alt text

Data

To run the code, you need to download the loop detector data from my GitHub link: https://github.com/zhiyongc/Seattle-Loop-Data. I'm sorry that the INRIX data can not be shared because of the confidentiality issues.

Cite

Hope our work can benefit your. If you use this code or data in your own workPlease cite our paper: Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

@article{cui2018deep,
  title={Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction},
  author={Cui, Zhiyong and Ke, Ruimin and Wang, Yinhai},
  journal={arXiv preprint arXiv:1801.02143},
  year={2018}
}

or

@inproceedings{cui2016deep,
  title={Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction},
  author={Cui, Zhiyong and Ke, Ruimin and Wang, Yinhai},
  booktitle={6th International Workshop on Urban Computing (UrbComp 2017)},
  year={2016}
}

stacked_bidirectional_unidirectional_lstm's People

Contributors

zhiyongc avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.