Giter VIP home page Giter VIP logo

hw2_s24's Introduction

HW2_S24

Due Thursday 2/22 11:59 PM Eastern.

Homework Overview

In this homework, we are going to explore LQR, convex trajectory optimization, and convex model predictive control. Here is an overview of the problems:

  1. Solve for the finite-horizon LQR controls as a convex optimization problem, then solve for the optimal feedback policy with the Ricatti recursion. Show that these are equivalent.

  2. Here we will use TVLQR to track a cartpole swingup, as well as infinite horizon LQR to stabilize the cartpole in the inverted position.

  3. In this question we will design controllers using LQR, convex trajectory optimization, and convex MPC for controlling the SpaceX Dragon spacecraft as it rendezvous with the ISS.

NOTE: UNIT TESTS ARE NOT FULLY COMPREHENSIVE!! PASSING THEM DOES NOT GUARANTEE FULL CREDIT IF CODE IMPLEMENTATION IS INCORRECT.

Submission Instructions

Checklist

Before you submit your completed homework PDF, remember to complete all the checklist items below:

  • Make sure text and code, including special characters, are completely legible.
  • Make sure code is completely visible (i.e., no cropped lines). If we can't see it, then we can't grade it... Look at section below for details on remedying this.
  • Make sure plots and unit tests have been outputted and rendered properly. Meshcat visuals are exempt.
  • DO NOT ALTER UNIT TEST CASES. We check and can tell...
  • Assign questions to each respective page of your PDF in Gradescope, including the text of the problem.

Fixing Cropped Code

If your code is cropped in the PDF, then there are multiple remedies for this:

  1. Split line around binary operator (e.g., +):
L_grad = FD.gradient(f, x) +
                transpose(FD.jacobian(c, x))*λ
  1. Split line around parenthesis:
L_grad = (FD.gradient(f, x)
                + transpose(FD.jacobian(c, x))*λ)
  1. Split line after assignment operator (e.g., =):
L_grad = 
    FD.gradient(f, x) + transpose(FD.jacobian(c, x))*λ
  1. Combine 1-3 to split into more lines:
L_grad = 
    FD.gradient(f, x) +
    transpose(FD.jacobian(c, x))*λ
  1. Assign terms to more variables:
cost_grad = FD.gradient(f, x)
constraint_jac_T = transpose(FD.jacobian(c, x))

L_grad = cost_grad + constraint_jac_T*λ

Export to PDF

Feel free to use any method you'd like to export your Jupyter notebook as a PDF (with all checklist items completed) and submit on gradescope.

We recommend the following method of converting your Jupyter notebook to a PDF because it requires no additional installs (hopefully). It's slightly involved, but it is the most consistent in our experience.

  1. Open the Jupyter notebook in your favorite web browser (not VS Code) with IJulia.
  2. Go through the submission checklist, and make sure all relevant items are completed.
  3. In the top left corner of the Jupyter menu bar, do File -> Save and Export Notebook As -> HTML. It should download an HTML file.
  4. Open the downloaded HTML file in your favorite web browser.
  5. Open up the browser's print menu and select Save as PDF.
  6. Save and combine PDFs.
  7. Submit on Gradescope, and make sure to assign the right pages to all questions.

Others

If HTML to PDF does not work, feel free to try other methods: https://mljar.com/blog/jupyter-notebook-pdf/.

hw2_s24's People

Contributors

zitongbai avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.