Giter VIP home page Giter VIP logo

decisiontree.jl's Introduction

DecisionTree.jl

Build Status Coverage Status Docs Stable

Julia implementation of Decision Tree (CART) and Random Forest algorithms

Available via:

  • AutoMLPipeline.jl - create complex ML pipeline structures using simple expressions
  • CombineML.jl - a heterogeneous ensemble learning package
  • MLJ.jl - a machine learning framework for Julia
  • ScikitLearn.jl - Julia implementation of the scikit-learn API

Classification

  • pre-pruning (max depth, min leaf size)
  • post-pruning (pessimistic pruning)
  • multi-threaded bagging (random forests)
  • adaptive boosting (decision stumps)
  • cross validation (n-fold)
  • support for ordered features (encoded as Reals or Strings)

Regression

  • pre-pruning (max depth, min leaf size)
  • multi-threaded bagging (random forests)
  • cross validation (n-fold)
  • support for numerical features

Note that regression is implied if labels/targets are of type Array{Float}

Installation

You can install DecisionTree.jl using Julia's package manager

Pkg.add("DecisionTree")

ScikitLearn.jl API

DecisionTree.jl supports the ScikitLearn.jl interface and algorithms (cross-validation, hyperparameter tuning, pipelines, etc.)

Available models: DecisionTreeClassifier, DecisionTreeRegressor, RandomForestClassifier, RandomForestRegressor, AdaBoostStumpClassifier. See each model's help (eg. ?DecisionTreeRegressor at the REPL) for more information

Classification Example

Load DecisionTree package

using DecisionTree

Separate Fisher's Iris dataset features and labels

features, labels = load_data("iris")    # also see "adult" and "digits" datasets

# the data loaded are of type Array{Any}
# cast them to concrete types for better performance
features = float.(features)
labels   = string.(labels)

Pruned Tree Classifier

# train depth-truncated classifier
model = DecisionTreeClassifier(max_depth=2)
fit!(model, features, labels)
# pretty print of the tree, to a depth of 5 nodes (optional)
print_tree(model, 5)
# apply learned model
predict(model, [5.9,3.0,5.1,1.9])
# get the probability of each label
predict_proba(model, [5.9,3.0,5.1,1.9])
println(get_classes(model)) # returns the ordering of the columns in predict_proba's output
# run n-fold cross validation over 3 CV folds
# See ScikitLearn.jl for installation instructions
using ScikitLearn.CrossValidation: cross_val_score
accuracy = cross_val_score(model, features, labels, cv=3)

Also, have a look at these classification and regression notebooks.

Native API

Classification Example

Decision Tree Classifier

# train full-tree classifier
model = build_tree(labels, features)
# prune tree: merge leaves having >= 90% combined purity (default: 100%)
model = prune_tree(model, 0.9)
# pretty print of the tree, to a depth of 5 nodes (optional)
print_tree(model, 5)
# apply learned model
apply_tree(model, [5.9,3.0,5.1,1.9])
# apply model to all the sames
preds = apply_tree(model, features)
# generate confusion matrix, along with accuracy and kappa scores
confusion_matrix(labels, preds)
# get the probability of each label
apply_tree_proba(model, [5.9,3.0,5.1,1.9], ["Iris-setosa", "Iris-versicolor", "Iris-virginica"])
# run 3-fold cross validation of pruned tree,
n_folds=3
accuracy = nfoldCV_tree(labels, features, n_folds)

# set of classification parameters and respective default values
# pruning_purity: purity threshold used for post-pruning (default: 1.0, no pruning)
# max_depth: maximum depth of the decision tree (default: -1, no maximum)
# min_samples_leaf: the minimum number of samples each leaf needs to have (default: 1)
# min_samples_split: the minimum number of samples in needed for a split (default: 2)
# min_purity_increase: minimum purity needed for a split (default: 0.0)
# n_subfeatures: number of features to select at random (default: 0, keep all)
# keyword rng: the random number generator or seed to use (default Random.GLOBAL_RNG)
n_subfeatures=0; max_depth=-1; min_samples_leaf=1; min_samples_split=2
min_purity_increase=0.0; pruning_purity = 1.0; seed=3

model    =   build_tree(labels, features,
                        n_subfeatures,
                        max_depth,
                        min_samples_leaf,
                        min_samples_split,
                        min_purity_increase;
                        rng = seed)

accuracy = nfoldCV_tree(labels, features,
                        n_folds,
                        pruning_purity,
                        max_depth,
                        min_samples_leaf,
                        min_samples_split,
                        min_purity_increase;
                        verbose = true,
                        rng = seed)

Random Forest Classifier

# train random forest classifier
# using 2 random features, 10 trees, 0.5 portion of samples per tree, and a maximum tree depth of 6
model = build_forest(labels, features, 2, 10, 0.5, 6)
# apply learned model
apply_forest(model, [5.9,3.0,5.1,1.9])
# get the probability of each label
apply_forest_proba(model, [5.9,3.0,5.1,1.9], ["Iris-setosa", "Iris-versicolor", "Iris-virginica"])
# run 3-fold cross validation for forests, using 2 random features per split
n_folds=3; n_subfeatures=2
accuracy = nfoldCV_forest(labels, features, n_folds, n_subfeatures)

# set of classification parameters and respective default values
# n_subfeatures: number of features to consider at random per split (default: -1, sqrt(# features))
# n_trees: number of trees to train (default: 10)
# partial_sampling: fraction of samples to train each tree on (default: 0.7)
# max_depth: maximum depth of the decision trees (default: no maximum)
# min_samples_leaf: the minimum number of samples each leaf needs to have (default: 5)
# min_samples_split: the minimum number of samples in needed for a split (default: 2)
# min_purity_increase: minimum purity needed for a split (default: 0.0)
# keyword rng: the random number generator or seed to use (default Random.GLOBAL_RNG)
#              multi-threaded forests must be seeded with an `Int`
n_subfeatures=-1; n_trees=10; partial_sampling=0.7; max_depth=-1
min_samples_leaf=5; min_samples_split=2; min_purity_increase=0.0; seed=3

model    =   build_forest(labels, features,
                          n_subfeatures,
                          n_trees,
                          partial_sampling,
                          max_depth,
                          min_samples_leaf,
                          min_samples_split,
                          min_purity_increase;
                          rng = seed)

accuracy = nfoldCV_forest(labels, features,
                          n_folds,
                          n_subfeatures,
                          n_trees,
                          partial_sampling,
                          max_depth,
                          min_samples_leaf,
                          min_samples_split,
                          min_purity_increase;
                          verbose = true,
                          rng = seed)

Adaptive-Boosted Decision Stumps Classifier

# train adaptive-boosted stumps, using 7 iterations
model, coeffs = build_adaboost_stumps(labels, features, 7);
# apply learned model
apply_adaboost_stumps(model, coeffs, [5.9,3.0,5.1,1.9])
# get the probability of each label
apply_adaboost_stumps_proba(model, coeffs, [5.9,3.0,5.1,1.9], ["Iris-setosa", "Iris-versicolor", "Iris-virginica"])
# run 3-fold cross validation for boosted stumps, using 7 iterations
n_iterations=7; n_folds=3
accuracy = nfoldCV_stumps(labels, features,
                          n_folds,
                          n_iterations;
                          verbose = true)

Regression Example

n, m = 10^3, 5
features = randn(n, m)
weights = rand(-2:2, m)
labels = features * weights

Regression Tree

# train regression tree
model = build_tree(labels, features)
# apply learned model
apply_tree(model, [-0.9,3.0,5.1,1.9,0.0])
# run 3-fold cross validation, returns array of coefficients of determination (R^2)
n_folds = 3
r2 = nfoldCV_tree(labels, features, n_folds)

# set of regression parameters and respective default values
# pruning_purity: purity threshold used for post-pruning (default: 1.0, no pruning)
# max_depth: maximum depth of the decision tree (default: -1, no maximum)
# min_samples_leaf: the minimum number of samples each leaf needs to have (default: 5)
# min_samples_split: the minimum number of samples in needed for a split (default: 2)
# min_purity_increase: minimum purity needed for a split (default: 0.0)
# n_subfeatures: number of features to select at random (default: 0, keep all)
# keyword rng: the random number generator or seed to use (default Random.GLOBAL_RNG)
n_subfeatures = 0; max_depth = -1; min_samples_leaf = 5
min_samples_split = 2; min_purity_increase = 0.0; pruning_purity = 1.0 ; seed=3

model = build_tree(labels, features,
                   n_subfeatures,
                   max_depth,
                   min_samples_leaf,
                   min_samples_split,
                   min_purity_increase;
                   rng = seed)

r2 =  nfoldCV_tree(labels, features,
                   n_folds,
                   pruning_purity,
                   max_depth,
                   min_samples_leaf,
                   min_samples_split,
                   min_purity_increase;
                   verbose = true,
                   rng = seed)

Regression Random Forest

# train regression forest, using 2 random features, 10 trees,
# averaging of 5 samples per leaf, and 0.7 portion of samples per tree
model = build_forest(labels, features, 2, 10, 0.7, 5)
# apply learned model
apply_forest(model, [-0.9,3.0,5.1,1.9,0.0])
# run 3-fold cross validation on regression forest, using 2 random features per split
n_subfeatures=2; n_folds=3
r2 = nfoldCV_forest(labels, features, n_folds, n_subfeatures)

# set of regression build_forest() parameters and respective default values
# n_subfeatures: number of features to consider at random per split (default: -1, sqrt(# features))
# n_trees: number of trees to train (default: 10)
# partial_sampling: fraction of samples to train each tree on (default: 0.7)
# max_depth: maximum depth of the decision trees (default: no maximum)
# min_samples_leaf: the minimum number of samples each leaf needs to have (default: 5)
# min_samples_split: the minimum number of samples in needed for a split (default: 2)
# min_purity_increase: minimum purity needed for a split (default: 0.0)
# keyword rng: the random number generator or seed to use (default Random.GLOBAL_RNG)
#              multi-threaded forests must be seeded with an `Int`
n_subfeatures=-1; n_trees=10; partial_sampling=0.7; max_depth=-1
min_samples_leaf=5; min_samples_split=2; min_purity_increase=0.0; seed=3

model = build_forest(labels, features,
                     n_subfeatures,
                     n_trees,
                     partial_sampling,
                     max_depth,
                     min_samples_leaf,
                     min_samples_split,
                     min_purity_increase;
                     rng = seed)

r2 =  nfoldCV_forest(labels, features,
                     n_folds,
                     n_subfeatures,
                     n_trees,
                     partial_sampling,
                     max_depth,
                     min_samples_leaf,
                     min_samples_split,
                     min_purity_increase;
                     verbose = true,
                     rng = seed)

Saving Models

Models can be saved to disk and loaded back with the use of the JLD2.jl package.

using JLD2
@save "model_file.jld2" model

Note that even though features and labels of type Array{Any} are supported, it is highly recommended that data be cast to explicit types (ie with float.(), string.(), etc). This significantly improves model training and prediction execution times, and also drastically reduces the size of saved models.

decisiontree.jl's People

Contributors

aerlinger avatar andreasnoack avatar andrewhannigan avatar aviks avatar barucden avatar bensadeghi avatar cstjean avatar dcjones avatar diegozea avatar dilumaluthge avatar eight1911 avatar iainnz avatar jackdunnnz avatar jrfiedler avatar juliatagbot avatar kmsquire avatar norci avatar regonn avatar salbert83 avatar tchiarawongs avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.