Giter VIP home page Giter VIP logo

awesome-ai-based-protein-design's Introduction

Awesome AI-based Protein Design

This is a collection of research papers for AI-based Protein Design. And the repository will be continuously updated to track the frontier of AI-based protein design.

Welcome to follow and star!

Table of Contents

Overview of Protein Design

AI tools have solved the protein structure prediction problem. This problem derives the spatial structure from the amino acid sequence and achieves atomic-level prediction accuracy, such as AlphaFold 2. It combines previous protein structure prediction models to automatically learn protein design methods, thus truly serving human pharmaceutical needs.

image info1 image info2

The specific practices of protein design vary widely, and the problem definitions applicable to different design processes are also very different. Here are some examples:

  1. A problem of predicting amino acid sequences from spatial structure (the inverse of Alphafold), which assumes that the spatial structure of the desired protein can be derived through molecular dynamics simulations, etc.
  2. A problem of protein structure completion problem for a given partial structure, such as the recent Science [1] by the famous David Baker group. This assumes that only partial structural matches can be found.
  3. Combination of the fitted energy function with MD simulation for protein design, such as the recent Nature [2] of Liu Haiyan's team in China.

In addition, many methods can be used for protein design, and the corresponding AI problem definitions are also very different. This article lists some high-level articles in AI-based protein design, which will be continuously updated in the future.

Papers

format:
- [title](paper link) [links]
  - author1, author2, and author3...
  - publisher
  - keyword

Nature

  • A backbone-centred energy function of neural networks for protein design

    • B Huang, Y Xu, X Hu, Y Liu, S Liao, J Zhang, C Huang
    • Keyword: energy function, MD simulation, backbone-centred
  • De novo protein design by deep network hallucination

    • Ivan Anishchenko, Samuel J. Pellock, Tamuka M. Chidyausiku, Theresa A. Ramelot, Sergey Ovchinnikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K. Bera, Frank DiMaio, Lauren Carter, Cameron M. Chow, Gaetano T. Montelione & David Baker
    • Keywords: hallucination, inpainting, protein design
  • Design of protein-binding proteins from the target structure alone

    • Longxing Cao, Brian Coventry, Inna Goreshnik, Buwei Huang, William Sheffler, Joon Sung Park, Kevin M. Jude, Iva Marković, Rameshwar U. Kadam, Koen H. G. Verschueren, Kenneth Verstraete, Scott Thomas Russell Walsh, Nathaniel Bennett, Ashish Phal, Aerin Yang, Lisa Kozodoy, Michelle DeWitt, Lora Picton, Lauren Miller, Eva-Maria Strauch, Nicholas D. DeBouver, Allison Pires, Asim K. Bera, Samer Halabiya, Bradley Hammerson, Wei Yang, Steffen Bernard, Lance Stewart, Ian A. Wilson, Hannele Ruohola-Baker, Joseph Schlessinger, Sangwon Lee, Savvas N. Savvides, K. Christopher Garcia & David Baker
    • Keywords: binding cite

Nature Biomedical Engineering

Nature Communications

Nature Machine Intelligence

Science

  • Robust deep learning based protein sequence design using ProteinMPNN

    • J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, D. Baker
    • Keywords: language model, structure prediction
  • Scaffolding protein functional sites using deep learning

    • Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L. Watson, Karla M. Castro, Robert Ragotte, Amijai Saragovi, Lukas F. Milles, Minkyung Baek, Ivan Anishchenko, Wei Yang, Derrick R. Hicks, Marc Expòsit, Thomas Schlichthaerle, Jung-Ho Chun, Justas Dauparas, Nathaniel Bennett, Basile I. M. Wicky, Andrew Muenks, Frank DiMaio, Bruno Correia, Sergey Ovchinnikov, David Baker
    • Keywords: functional site, deep learning, hallucination, inpainting

ICML, ICLR or NeurIPS

Arxiv or bioRxiv

Others

Reference

[1] Wang, Jue, et al. "Scaffolding protein functional sites using deep learning." Science 377.6604 (2022): 387-394.

[2] Huang, Bin, et al. "A backbone-centred energy function of neural networks for protein design." Nature 602.7897 (2022): 523-528.

Contributing

Our purpose is to make this repo even better. If you are interested in contributing, please refer to HERE for instructions in contribution.

License

awesome AI-based protein design is released under the Apache 2.0 license.

awesome-ai-based-protein-design's People

Contributors

cloud-pku avatar gemhou avatar paparazz1 avatar vaninay avatar zjowowen avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.