Giter VIP home page Giter VIP logo

iterators.jl's Introduction

Iterators.jl

Iterators Iterators

Build Status Coverage Status

Common functional iterator patterns.

DEPRECATION

Iterators.jl has been deprecated in favour of IterTools.jl. Please update your package dependencies: Iterators 0.3.1 maps to IterTools 0.1.0.

See #104 for more information.

Installation

Install this package with Pkg.add("Iterators")

Usage


  • takestrict(xs, n)

    Equivalent to take, but will throw an exception if fewer than n items are encountered in xs.

  • repeatedly(f, [n])

    Call a function n times, or infinitely if n is omitted.

    Example:

    for t in repeatedly(time_ns, 3)
        @show t
    end
    t = 0x0000592ff83caf87
    t = 0x0000592ff83d8cf4
    t = 0x0000592ff83dd11e
    
  • chain(xs...)

    Iterate through any number of iterators in sequence.

    Example:

    for i in chain(1:3, ['a', 'b', 'c'])
        @show i
    end
    i = 1
    i = 2
    i = 3
    i = 'a'
    i = 'b'
    i = 'c'
    
  • product(xs...)

    Iterate over all combinations in the cartesian product of the inputs.

    Example:

    for p in product(1:3,1:2)
        @show p
    end

    yields

    p = (1,1)
    p = (2,1)
    p = (3,1)
    p = (1,2)
    p = (2,2)
    p = (3,2)
    
  • distinct(xs)

    Iterate through values skipping over those already encountered.

    Example:

    for i in distinct([1,1,2,1,2,4,1,2,3,4])
        @show i
    end
    i = 1
    i = 2
    i = 4
    i = 3
    
  • nth(xs, n)

    Return the n'th element of xs. Mostly useful for non indexable collections.

    Example:

    nth(1:3, 3)
    3
    
  • takenth(xs, n)

    Iterate through every n'th element of xs

    Example:

    collect(takenth(5:15,3))
    3-element Array{Int32,1}:
      7
     10
     13
    
  • partition(xs, n, [step])

    Group values into n-tuples.

    Example:

    for i in partition(1:9, 3)
        @show i
    end
    i = (1,2,3)
    i = (4,5,6)
    i = (7,8,9)
    

    If the step parameter is set, each tuple is separated by step values.

    Example:

    for i in partition(1:9, 3, 2)
        @show i
    end
    i = (1,2,3)
    i = (3,4,5)
    i = (5,6,7)
    i = (7,8,9)
    
  • groupby(f, xs)

    Group consecutive values that share the same result of applying f.

    Example:

    for i in groupby(x -> x[1], ["face", "foo", "bar", "book", "baz", "zzz"])
        @show i
    end
    i = ASCIIString["face","foo"]
    i = ASCIIString["bar","book","baz"]
    i = ASCIIString["zzz"]
    
  • imap(f, xs1, [xs2, ...])

    Iterate over values of a function applied to successive values from one or more iterators.

    Example:

    for i in imap(+, [1,2,3], [4,5,6])
         @show i
    end
    i = 5
    i = 7
    i = 9
    
  • subsets(xs)

    Iterate over every subset of a collection xs.

    Example:

    for i in subsets([1,2,3])
     @show i
    end
    i = []
    i = [1]
    i = [2]
    i = [1,2]
    i = [3]
    i = [1,3]
    i = [2,3]
    i = [1,2,3]
    
  • subsets(xs, k)

    Iterate over every subset of size k from a collection xs.

    Example:

    for i in subsets([1,2,3],2)
     @show i
    end
    i = [1,2]
    i = [1,3]
    i = [2,3]
    
  • peekiter(xs)

    Add possibility to peek head element of an iterator without updating the state.

    Example:

    it = peekiter(["face", "foo", "bar", "book", "baz", "zzz"])
    s = start(it)
    @show peek(it, s)
    @show peek(it, s)
    x, s = next(it, s)
    @show x
    @show peek(it, s)
    peek(it,s) = Nullable("face")
    peek(it,s) = Nullable("face") # no change
    x = "face"
    peek(it,s) = Nullable("foo")
    
  • ncycle(xs,n)

    Cycles through an iterator n times

    Example:

    for i in ncycle(1:3, 2)
        @show i
    end
    i = 1
    i = 2
    i = 3
    i = 1
    i = 2
    i = 3
    
  • iterate(f, x)

    Iterate over successive applications of f, as in f(x), f(f(x)), f(f(f(x))), ....

    Example:

    for i in take(iterate(x -> 2x, 1), 5)
        @show i
    end
    i = 1
    i = 2
    i = 4
    i = 8
    i = 16
    

The @itr macro for automatic inlining in for loops

Using functional iterators is powerful and concise, but may incur in some overhead, and manually inlining the operations can typically improve performance in critical parts of the code. The @itr macro is provided to do that automatically in some cases. Its usage is trivial: for example, given this code:

for (x,y) in zip(a,b)
    @show x,y
end

the automatically inlined version can be obtained by simply doing:

@itr for (x,y) in zip(a,b)
    @show x,y
end

This typically results in faster code, but its applicability has limitations:

  • it only works with for loops;
  • if multiple nested iterators are used, only the outermost is affected by the transformation;
  • explicit expressions are required (i.e. when a Tuple is expected, an explicit tuple must be provided, a tuple variable won't be accepted);
  • splicing is not supported;
  • multidimensional loops (i.e. expressions such as for x in a, y in b) are not supported

The @itr macro can be used with the following supported iterators:

  • zip
  • enumerate
  • take
  • takestrict
  • drop
  • chain

iterators.jl's People

Contributors

dcjones avatar iamed2 avatar kmsquire avatar simonster avatar garborg avatar stefankarpinski avatar yuyichao avatar timholy avatar keno avatar carlobaldassi avatar mrtzh avatar cormullion avatar lendle avatar mk12 avatar malmaud avatar jeffbezanson avatar dfdx avatar carlolucibello avatar gasagna avatar totalverb avatar iainnz avatar jakebolewski avatar jiahao avatar garrison avatar oxinabox avatar micklat avatar nolta avatar rdeits avatar tkelman avatar getzdan avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.