Giter VIP home page Giter VIP logo

idr2d's Introduction

IDR2D: Irreproducible Discovery Rate for Genomic Interactions

license: MIT DOI BioC platforms Coverage Status

https://idr2d.mit.edu

Chromatin interaction data from protocols such as ChIA-PET and HiChIP provide valuable insights into genome organization and gene regulation, but can include spurious interactions that do not reflect underlying genome biology. We introduce a generalization of the Irreproducible Discovery Rate (IDR) method called IDR2D that identifies replicable interactions shared by experiments. IDR2D provides a principled set of interactions and eliminates artifacts from single experiments.

Installation

The idr2d package is part of Bioconductor since release 3.10. To install it on your system, enter:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager")
}

BiocManager::install("idr2d")

Alternatively, the development version can be installed directly from this repository:

if (!requireNamespace("remotes", quietly = TRUE)) {
  install.packages("remotes")
}

remotes::install_github("kkrismer/idr2d")

R 3.6 (or higher) and Bioconductor 3.10 (or higher) is required in both cases. Additionally, the 64-bit version of Python 3.5 (or higher) and the Python package hic-straw are required for Hi-C analysis from Juicer .hic files.

Usage

There are two vignettes available on Bioconductor, focusing on idr2d and ChIA-PET data and idr2d and ChIP-seq data.

The reference manual might also be helpful if you know what you are looking for.

Example code for ChiP-seq, ChIA-PET and Hi-C experiments

Analyzing results from replicate ChIP-seq experiments (stored in tab-delimited files chip-seq-rep1.txt and chip-seq-rep2.txt):

library(idr2d)

rep1_df <- read.table("chip-seq-rep1.txt", header = TRUE, sep = "\t",
                      stringsAsFactors = FALSE)
rep2_df <- read.table("chip-seq-rep2.txt", header = TRUE, sep = "\t",
                      stringsAsFactors = FALSE)

idr_results <- estimate_idr1d(rep1_df, rep2_df, 
                              value_transformation = "identity")
summary(idr_results)

rep1_idr_df <- idr_results$rep1_df
draw_idr_distribution_histogram(rep1_idr_df)
draw_rank_idr_scatterplot(rep1_idr_df)
draw_value_idr_scatterplot(rep1_idr_df)

Analyzing results from replicate ChIA-PET experiments (stored in tab-delimited files chia-pet-rep1.txt and chia-pet-rep2.txt):

library(idr2d)

rep1_df <- read.table("chia-pet-rep1.txt", header = TRUE, sep = "\t",
                      stringsAsFactors = FALSE)
rep2_df <- read.table("chia-pet-rep2.txt", header = TRUE, sep = "\t",
                      stringsAsFactors = FALSE)

idr_results <- estimate_idr2d(rep1_df, rep2_df, 
                              value_transformation = "identity")
summary(idr_results)

rep1_idr_df <- idr_results$rep1_df
draw_idr_distribution_histogram(rep1_idr_df)
draw_rank_idr_scatterplot(rep1_idr_df)
draw_value_idr_scatterplot(rep1_idr_df)

Analyzing chromosome 1 results in 1 Mbp resolution from replicate Hi-C experiments (stored in Juicer .hic files hic-rep1.hic and hic-rep2.hic):

library(idr2d)

rep1_df <- parse_juicer_matrix("hic-rep1.hic", resolution = 1e+06, chromosome = "chr1")
rep2_df <- parse_juicer_matrix("hic-rep2.hic", resolution = 1e+06, chromosome = "chr1")

idr_results_df <- estimate_idr2d_hic(rep1_df, rep2_df)
summary(idr_results_df)

draw_idr_distribution_histogram(idr_results_df)
draw_rank_idr_scatterplot(idr_results_df)
draw_value_idr_scatterplot(idr_results_df)
draw_hic_contact_map(idr_results_df, idr_cutoff = 0.05, chromosome = "chr1")

Analyzing chromosome 1 results in 1 Mbp resolution from replicate Hi-C experiments (stored in ICE normalized HiC-Pro .matrix and .bed files rep1_1000000_iced.matrix, rep1_1000000_abs.bed and rep2_1000000_iced.matrix, rep2_1000000_abs.bed):

library(idr2d)

rep1_df <- parse_hic_pro_matrix("rep1_1000000_iced.matrix", "rep1_1000000_abs.bed", chromosome = "chr1")
rep2_df <- parse_hic_pro_matrix("rep2_1000000_iced.matrix", "rep2_1000000_abs.bed", chromosome = "chr1")

idr_results_df <- estimate_idr2d_hic(rep1_df, rep2_df)
summary(idr_results_df)

draw_idr_distribution_histogram(idr_results_df)
draw_rank_idr_scatterplot(idr_results_df)
draw_value_idr_scatterplot(idr_results_df)
draw_hic_contact_map(idr_results, idr_cutoff = 0.05, chromosome = "chr1")

Build status

Platform Status
Travis CI Travis build status
Bioconductor 3.14 (release) BioC release
Bioconductor 3.15 (devel) BioC devel

Citation

If you use IDR2D in your research, please cite:

IDR2D identifies reproducible genomic interactions
Konstantin Krismer, Yuchun Guo, and David K. Gifford
Nucleic Acids Research, Volume 48, Issue 6, 06 April 2020, Page e31; DOI: https://doi.org/10.1093/nar/gkaa030

Funding

The development of this method was supported by National Institutes of Health (NIH) grants 1R01HG008363 and 1R01NS078097, and the MIT Presidential Fellowship.

idr2d's People

Contributors

kkrismer avatar nturaga avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.