Giter VIP home page Giter VIP logo

bonsai-dt's People

Contributors

yubin-park avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar

bonsai-dt's Issues

mondrian tree

Hi Yubin,

Very interesting work! I was wondering if you had any ideas on implementing a mondrian tree: I have some script from nel215 that looks to be in the most basic form using just numpy, do you think their is a way we could implement it in a find_split/is_leaf form that you present?

import numpy as np

class MondrianForestRegressor(object):
def init(self, n_tree):
self.n_tree = n_tree
self.trees = []
for i in range(self.n_tree):
self.trees.append(MondrianTreeRegressor())
def fit(self, X, y):
for tree in self.trees:
tree.fit(X, y)
def partial_fit(self, X, y):
for tree in self.trees:
tree.partial_fit(X, y)

def get_params(self, deep):
    return {'n_tree': self.n_tree}

def predict(self, X):
    res = np.array([tree.predict(X) for tree in self.trees])
    return res.mean(axis=0)

class Node(object):
def init(self, min_list, max_list, tau, is_leaf, stat, parent=None, delta=None, xi=None):
self.parent = parent
self.tau = tau
self.is_leaf = is_leaf
self.min_list = min_list
self.max_list = max_list
self.delta = delta
self.xi = xi
self.left = None
self.right = None
self.stat = stat

def update_leaf(self, x, label):
    self.stat.add(x, label)

def update_internal(self):
    self.stat = self.left.stat.merge(self.right.stat)

def get_parent_tau(self):
    if self.parent is None:
        return 0.0
    return self.parent.tau

def __repr__(self):
    return "<mondrianforest.Node tau={} min_list={} max_list={} is_leaf={}>".format(
        self.tau,
        self.min_list,
        self.max_list,
        self.is_leaf,
    )

class RegressorFactory(object):
def create(self):
return Regressor()

class MondrianTree(object):
def init(self):
self.root = None
self.classes = set()

def create_leaf(self, x, label, parent):
    leaf = Node(
        min_list=x.copy(),
        max_list=x.copy(),
        is_leaf=True,
        stat=self.stat_factory.create(),
        tau=1e9,
        parent=parent,
    )
    leaf.update_leaf(x, label)
    return leaf

def extend_mondrian_block(self, node, x, label):
    '''
        return root of sub-tree
    '''
    e_min = np.maximum(node.min_list - x, 0)
    e_max = np.maximum(x - node.max_list, 0)
    e_sum = e_min + e_max
    rate = np.sum(e_sum) + 1e-9
    E = np.random.exponential(1.0/rate)
    if node.get_parent_tau() + E < node.tau:
        e_sample = np.random.rand() * np.sum(e_sum)
        delta = (e_sum.cumsum() > e_sample).argmax()
        if x[delta] > node.min_list[delta]:
            xi = np.random.uniform(node.min_list[delta], x[delta])
        else:
            xi = np.random.uniform(x[delta], node.max_list[delta])
        parent = Node(
            min_list=np.minimum(node.min_list, x),
            max_list=np.maximum(node.max_list, x),
            is_leaf=False,
            stat=self.stat_factory.create(),
            tau=node.get_parent_tau() + E,
            parent=node.parent,
            delta=delta,
            xi=xi,
        )
        sibling = self.create_leaf(x, label, parent=parent)
        if x[parent.delta] <= parent.xi:
            parent.left = sibling
            parent.right = node
        else:
            parent.left = node
            parent.right = sibling
        node.parent = parent
        parent.update_internal()
        return parent
    else:
        node.min_list = np.minimum(x, node.min_list)
        node.max_list = np.maximum(x, node.max_list)
        if not node.is_leaf:
            if x[node.delta] <= node.xi:
                node.left = self.extend_mondrian_block(node.left, x, label)
            else:
                node.right = self.extend_mondrian_block(node.right, x, label)
            node.update_internal()
        else:
            node.update_leaf(x, label)
        return node

def partial_fit(self, X, y):
    for x, label in zip(X, y):
        self.classes |= {label}
        if self.root is None:
            self.root = self.create_leaf(x, label, parent=None)
        else:
            self.root = self.extend_mondrian_block(self.root, x, label)

def fit(self, X, y):
    self.root = None
    self.partial_fit(X, y)

def _predict(self, x, node, p_not_separeted_yet):
    d = node.tau - node.get_parent_tau()
    eta = np.sum(np.maximum(x-node.max_list, 0) + np.maximum(node.min_list - x, 0))
    p = 1.0 - np.exp(-d*eta)
    result = node.stat.create_result(x, p_not_separeted_yet * p)
    if node.is_leaf:
        w = p_not_separeted_yet * (1.0 - p)
        return result.merge(node.stat.create_result(x, w))
    if x[node.delta] <= node.xi:
        child_result = self._predict(x, node.left, p_not_separeted_yet*(1.0-p))
    else:
        child_result = self._predict(x, node.right, p_not_separeted_yet*(1.0-p))
    return result.merge(child_result)

def get_params(self, deep):
    return {}

class MondrianTreeRegressor(object):
def init(self):
MondrianTree.init(self)
self.stat_factory = RegressorFactory()

def predict(self, X):
    res = []
    for x in X:
        predicted = self._predict(x, self.root, 1.0).get()
        res.append(predicted)
    # res=map(lambda x : (self._predict(X, self.root, 1.0).get()),X)
    return np.array(res)

class RegressorResult(object):
def init(self, avg):
self.avg = avg

def merge(self, r):
    return RegressorResult(self.avg + r.avg)

def get(self):
    return self.avg

class Regressor(object):
def init(self):
self.sum = 0
self.count = 0
def add(self, x, y):
(self.sum) += y
(self.count) += 1
def merge(self, r):
res = Regressor()
res.sum = self.sum + r.sum
res.count = self.count + r.count
return res

def predict(self, x):
    if self.count == 0:
        return 0
    else:
        return self.sum / self.count

def create_result(self, x, w):
    return RegressorResult(self.predict(x)*w)

AlphaTree risk pyramid

Hi Yubin,

I would like to know how I can create a risk pyramid similar to the one provided in your work in Figure 5. The steps necessary to do so, after fitting an AlphaTree, aren't very clear to me. I know it will probably be calculated by using the current ratio of classes but I'm not sure if also the predicted y_label comes into play somehow.

Looking forward to hearing from you!

multiclass handling

Currently, bonsai handles only regression and binary classification tasks. It needs to handle multiclass classification tasks.

Pre-compiled version/release

Hi,

thanks for your time and effort you've put into this project. I wanted to ask, is there any possibility we could get pre-compiled versions/releases so that we don't need to compile anything on our computers? I'm working in an environment where compiling software is problematic.

Thanks for your answer.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.