Giter VIP home page Giter VIP logo

jhu-lcsr / costar_plan Goto Github PK

View Code? Open in Web Editor NEW
67.0 19.0 23.0 43.32 MB

Integrating learning and task planning for robots with Keras, including simulation, real robot, and multiple dataset support.

Home Page: https://sites.google.com/site/costardataset

License: Apache License 2.0

CMake 2.56% Python 85.11% C++ 8.91% Shell 2.80% Lua 0.62%
learning learning-from-demonstration lfd robotics ros ur5 simulation planning task-planning planner

costar_plan's Introduction

CoSTAR Plan

Build Status

CoSTAR Plan is for deep learning with robots divided into two main parts: The CoSTAR Task Planner (CTP) library and CoSTAR Hyper.

CoSTAR Task Planner (CTP)

Code for the paper Visual Robot Task Planning.

Code for the paper The CoSTAR Block Stacking Dataset: Learning with Workspace Constraints.

@article{hundt2019costar,
    title={The CoSTAR Block Stacking Dataset: Learning with Workspace Constraints},
    author={Andrew Hundt and Varun Jain and Chia-Hung Lin and Chris Paxton and Gregory D. Hager},
    journal = {Intelligent Robots and Systems (IROS), 2019 IEEE International Conference on},
    year = 2019,
    url = {https://arxiv.org/abs/1810.11714}
}

Training Frankenstein's Creature To Stack: HyperTree Architecture Search

Code instructions are in the CoSTAR Hyper README.md.

Supported Datasets

CoSTAR Task Planner (CTP)

The CoSTAR Planner is part of the larger CoSTAR project. It integrates some learning from demonstration and task planning capabilities into the larger CoSTAR framework in different ways.

Visual Task Planning

Specifically it is a project for creating task and motion planning algorithms that use machine learning to solve challenging problems in a variety of domains. This code provides a testbed for complex task and motion planning search algorithms.

The goal is to describe example problems where the actor must move around in the world and plan complex interactions with other actors or the environment that correspond to high-level symbolic states. Among these is our Visual Task Planning project, in which robots learn representations of their world and use these to imagine possible futures, then use these for planning.

To run deep learning examples, you will need TensorFlow and Keras, plus a number of Python packages. To run robot experiments, you'll need a simulator (Gazebo or PyBullet), and ROS Indigo or Kinetic. Other versions of ROS may work but have not been tested. If you want to stick to the toy examples, you do not need to use this as a ROS package.

About this repository: CTP is a single-repository project. As such, all the custom code you need should be in one place: here. There are exceptions, such as the CoSTAR Stack for real robot execution, but these are generally not necessary. The minimal installation of CTP is just to install the costar_models package as a normal python package ignoring everything else.

CTP Datasets

Contents

Package/folder layout

  • CoSTAR Simulation: Gazebo simulation and ROS execution
  • CoSTAR Task Plan: the high-level python planning library
  • CoSTAR Gazebo Plugins: assorted plugins for integration
  • CoSTAR Models: tools for learning deep neural networks
  • CTP Tom: specific bringup and scenarios for the TOM robot from TU Munich
  • CTP Visual: visual robot task planner
  • setup: contains setup scripts
  • slurm: contains SLURM scripts for running on MARCC
  • command: contains scripts with example CTP command-line calls
  • docs: markdown files for information that is not specific to a particular ROS package but to all of CTP
  • photos: example images
  • learning_planning_msgs: ROS messages for data collection when doing learning from demonstration in ROS
  • Others are temporary packages for various projects

Many of these sections are a work in progress; if you have any questions shoot me an email ([email protected]).

Contact

This code is maintained by:

Cite

Visual Robot Task Planning

@article{paxton2018visual,
  author    = {Chris Paxton and
               Yotam Barnoy and
               Kapil D. Katyal and
               Raman Arora and
               Gregory D. Hager},
  title     = {Visual Robot Task Planning},
  journal   = {ArXiv},
  year      = {2018},
  url       = {http://arxiv.org/abs/1804.00062},
  archivePrefix = {arXiv},
  eprint    = {1804.00062},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1804-00062},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Training Frankenstein's Creature To Stack: HyperTree Architecture Search

@article{hundt2018hypertree,
    author = {Andrew Hundt and Varun Jain and Chris Paxton and Gregory D. Hager},
    title = "{Training Frankenstein's Creature to Stack: HyperTree Architecture Search}",
    journal = {ArXiv},
    archivePrefix = {arXiv},
    eprint = {1810.11714},
    year = 2018,
    month = Oct,
    url = {https://arxiv.org/abs/1810.11714}
}

costar_plan's People

Contributors

ahundt avatar bluddy avatar costarguest avatar cpaxton avatar dingyu95 avatar fjonath1 avatar ilya0ics avatar j-varun avatar karinne-ics-tum avatar kdk132 avatar mlee156 avatar rexxarchl avatar xumzsy avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

costar_plan's Issues

Deliverable for Albert by Monday

  • Import Jaco arm into Costar
  • Try to run installation scripts to see if they work
  • Try installing following directions on blank ubuntu

------- Reach goals

  • Create docker image for installation
  • finish travis.yml

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.